Package: loo (via r-universe)

October 16, 2025

Type Package

Title Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian
Models

Version 2.8.0
Date 2024-07-03
Maintainer Jonah Gabry <jsg2201@columbia.edu>

URL https://mc-stan.org/loo/, https://discourse.mc-stan.org

BugReports https://github.com/stan-dev/loo/issues

Description Efficient approximate leave-one-out cross-validation (LOO)
for Bayesian models fit using Markov chain Monte Carlo, as
described in Vehtari, Gelman, and Gabry (2017)
<doi:10.1007/s11222-016-9696-4>. The approximation uses Pareto
smoothed importance sampling (PSIS), a new procedure for
regularizing importance weights. As a byproduct of the
calculations, we also obtain approximate standard errors for
estimated predictive errors and for the comparison of
predictive errors between models. The package also provides
methods for using stacking and other model weighting techniques
to average Bayesian predictive distributions.

License GPL (>=3)
LazyData TRUE
Depends R (>=3.1.2)

Imports checkmate, matrixStats (>= 0.52), parallel, posterior (>=
1.5.0), stats

Suggests bayesplot (>= 1.7.0), brms (>= 2.10.0), ggplot2, graphics,
knitr, rmarkdown, rstan, rstanarm (>= 2.19.0), rstantools,
spdep, testthat (>=2.1.0)

VignetteBuilder knitr
Encoding UTF-8

SystemRequirements pandoc (>= 1.12.3), pandoc-citeproc

1

https://mc-stan.org/loo/
https://discourse.mc-stan.org
https://github.com/stan-dev/loo/issues
https://doi.org/10.1007/s11222-016-9696-4

2 Contents

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

Repository https://r-multiverse-staging.r-universe.dev
Date/Publication 2024-07-03 15:28:29 UTC

RemoteUrl https://github.com/stan-dev/loo

RemoteRef v2.8.0

RemoteSha 23e68bf5fb8aa9d000358f3bbbf52cf7ee92a99c

Contents
loo-package 3
AP_PSIS .+ o e e e 5
COMPAIE . . o o o o v v e e e e et e e e e e e e e e e e 6
CIPS v v o e e e e e e e e e e e e e e e e 7
elpd . . .o e 10
example_loglik_array 11
extract_log_lik L 11
E 100 . . . s 12
gpdfit . .. 15
importance_sampling e e e e e e 16
kfold-generic e e e 17
kfold-helpers e 18
100 . . o e 19
loo-datasets e e 25
loo-glossary e e e e e 26
loo_approximate_posSterior e e e e 28
loo_compare e e e e e e e 31
loo_model_weights 33
loo_moment match L 37
loo_moment_match_split 40
loo_predictive_metric 41
loo_subsample L 43
nobs.psis_lo0_Ss e 47
obs 1dX s 47
pareto-k-diagnostic oL 48
POINTWISE oo e e 51
printloo 52
PSIS o o 53
PSISIW . e e 55
relative_eff L 56
) 58
15 61
update.psis_100_SS 63
WAIC .+ v v o v e e e e e e e e e e e e e e e e e e 65

weights.importance_sampling Lo 67

loo-package 3

Index 69

loo-package Efficient LOO-CV and WAIC for Bayesian models

Description

Stan Development Team

This package implements the methods described in Vehtari, Gelman, and Gabry (2017), Vehtari,

Simpson, Gelman, Yao, and Gabry (2024), and Yao et al. (2018). To get started see the loo package

vignettes, the loo() function for efficient approximate leave-one-out cross-validation (LOO-CV),

the psis() function for the Pareto smoothed importance sampling (PSIS) algorithm, or Lloo_model_weights()
for an implementation of Bayesian stacking of predictive distributions from multiple models.

Details

Leave-one-out cross-validation (LOO-CV) and the widely applicable information criterion (WAIC)
are methods for estimating pointwise out-of-sample prediction accuracy from a fitted Bayesian
model using the log-likelihood evaluated at the posterior simulations of the parameter values. LOO-
CV and WAIC have various advantages over simpler estimates of predictive error such as AIC and
DIC but are less used in practice because they involve additional computational steps. This package
implements the fast and stable computations for approximate LOO-CV laid out in Vehtari, Gelman,
and Gabry (2017). From existing posterior simulation draws, we compute LOO-CV using Pareto
smoothed importance sampling (PSIS; Vehtari, Simpson, Gelman, Yao, and Gabry, 2024), a new
procedure for stabilizing and diagnosing importance weights. As a byproduct of our calculations,
we also obtain approximate standard errors for estimated predictive errors and for comparing of
predictive errors between two models.

We recommend PSIS-LOO-CV instead of WAIC, because PSIS provides useful diagnostics and
effective sample size and Monte Carlo standard error estimates.

Author(s)

Maintainer: Jonah Gabry <jsg2201@columbia.edu>
Authors:

* Aki Vehtari <Aki.Vehtari@aalto.fi>
* Mins Magnusson

* Yuling Yao

¢ Paul-Christian Biirkner

* Topi Paananen

¢ Andrew Gelman
Other contributors:

¢ Ben Goodrich [contributor]
¢ Juho Piironen [contributor]
¢ Bruno Nicenboim [contributor]

* Leevi Lindgren [contributor]

https://mc-stan.org/loo/articles/index.html

4 loo-package

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17-BA1091. (online).

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2019). Leave-One-Out Cross-
Validation for Large Data. In Thirty-sixth International Conference on Machine Learning, PMLR
97:4244-4253.

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2020). Leave-One-Out Cross-
Validation for Model Comparison in Large Data. In Proceedings of the 23rd International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), PMLR 108:341-351.

Epifani, I., MacEachern, S. N., and Peruggia, M. (2008). Case-deletion importance sampling esti-
mators: Central limit theorems and related results. Electronic Journal of Statistics 2, 774-806.

Gelfand, A. E. (1996). Model determination using sampling-based methods. In Markov Chain
Monte Carlo in Practice, ed. W. R. Gilks, S. Richardson, D. J. Spiegelhalter, 145-162. London:
Chapman and Hall.

Gelfand, A. E., Dey, D. K., and Chang, H. (1992). Model determination using predictive dis-
tributions with implementation via sampling-based methods. In Bayesian Statistics 4, ed. J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, 147-167. Oxford University Press.

Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing 24, 997-1016.

Ionides, E. L. (2008). Truncated importance sampling. Journal of Computational and Graphical
Statistics 17, 295-311.

Koopman, S. J., Shephard, N., and Creal, D. (2009). Testing the assumptions behind importance
sampling. Journal of Econometrics 149, 2-11.

Peruggia, M. (1997). On the variability of case-deletion importance sampling weights in the
Bayesian linear model. Journal of the American Statistical Association 92, 199-207.

Stan Development Team (2017). The Stan C++ Library, Version 2.17.0. https://mc-stan.org.

Stan Development Team (2018). RStan: the R interface to Stan, Version 2.17.3. https://mc-stan.
org.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely application
information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571-
3594.

Zhang, J., and Stephens, M. A. (2009). A new and efficient estimation method for the generalized
Pareto distribution. Technometrics 51, 316-325.

See Also
Useful links:

* https://mc-stan.org/loo/

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html
https://projecteuclid.org/euclid.ba/1516093227
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org/loo/

ap_psis

e https://discourse.mc-stan.org

* Report bugs at https://github.com/stan-dev/loo/issues

ap_psis

Pareto smoothed importance sampling (PSIS) using approximate pos-
teriors

Description

Pareto smoothed importance sampling (PSIS) using approximate posteriors

Usage

ap_psis(log_ratios, log_p, log_g, ...)

S3 method for class 'array'
ap_psis(log_ratios, log_p, log_g, ..., cores = getOption("mc.cores”, 1))

S3 method for class 'matrix'’
ap_psis(log_ratios, log_p, log_g, ..., cores = getOption("mc.cores”, 1))

Default S3 method:
ap_psis(log_ratios, log_p, log_g, ...)

Arguments
log_ratios

log_p

log_g

cores

The log-likelihood ratios (ie -log_liks)

The log-posterior (target) evaluated at S samples from the proposal distribution
(g). A vector of length S.

The log-density (proposal) evaluated at S samples from the proposal distribution
(g). A vector of length S.

Currently not in use.

The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until 1loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

https://discourse.mc-stan.org
https://github.com/stan-dev/loo/issues
https://github.com/stan-dev/loo/issues/94

6 compare

Methods (by class)

e ap_psis(array): An I by C by N array, where [is the number of MCMC iterations per
chain, C'is the number of chains, and IV is the number of data points.

e ap_psis(matrix): An S by N matrix, where S is the size of the posterior sample (with all
chains merged) and NN is the number of data points.

* ap_psis(default): A vector of length S (posterior sample size).

compare Model comparison (deprecated, old version)

Description

This function is deprecated. Please use the new loo_compare() function instead.

Usage
compare(..., x = list())
Arguments
At least two objects returned by loo() (or waic()).
X A list of at least two objects returned by 1oo() (or waic()). This argument can
be used as an alternative to specifying the objectsin
Details

When comparing two fitted models, we can estimate the difference in their expected predictive
accuracy by the difference in elpd_loo or elpd_waic (or multiplied by -2, if desired, to be on the
deviance scale).

When that difference, elpd_diff, is positive then the expected predictive accuracy for the second
model is higher. A negative elpd_diff favors the first model.

When using compare() with more than two models, the values in the elpd_diff and se_diff
columns of the returned matrix are computed by making pairwise comparisons between each model
and the model with the best ELPD (i.e., the model in the first row). Although the elpd_diff
column is equal to the difference in elpd_loo, do not expect the se_diff column to be equal to the
the difference in se_elpd_loo.

To compute the standard error of the difference in ELPD we use a paired estimate to take advantage
of the fact that the same set of N data points was used to fit both models. These calculations should
be most useful when N is large, because then non-normality of the distribution is not such an issue
when estimating the uncertainty in these sums. These standard errors, for all their flaws, should give
a better sense of uncertainty than what is obtained using the current standard approach of comparing
differences of deviances to a Chi-squared distribution, a practice derived for Gaussian linear models
or asymptotically, and which only applies to nested models in any case.

crps 7

Value

A vector or matrix with class 'compare.loo’ that has its own print method. If exactly two objects
are provided in . . . or X, then the difference in expected predictive accuracy and the standard error
of the difference are returned. If more than two objects are provided then a matrix of summary
information is returned (see Details).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

Examples

Not run:

loo1 <- loo(log_lik1)

loo2 <- loo(log_lik2)
print(compare(lool, loo2), digits = 3)
print(compare(x = list(lool, lo02)))

waicl <- waic(log_lik1)
waic2 <- waic(log_lik2)

compare(waicl, waic2)

End(Not run)

crps Continuously ranked probability score

Description

The crps() and scrps() functions and their loo_*() counterparts can be used to compute the
continuously ranked probability score (CRPS) and scaled CRPS (SCRPS) (see Bolin and Wallin,
2022). CRPS is a proper scoring rule, and strictly proper when the first moment of the predictive
distribution is finite. Both can be expressed in terms of samples form the predictive distribution.
See e.g. Gneiting and Raftery (2007) for a comprehensive discussion on CRPS.

Usage

crps(x, ...)
scrps(x, ...)

loo_crps(x, ...)

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html

8 crps

loo_scrps(x, ...)

S3 method for class 'matrix'

crps(x, x2, y, ..., permutations = 1)
S3 method for class 'numeric'
crps(x, x2, y, ..., permutations = 1)
S3 method for class 'matrix'
loo_crps(
X ’
X2,
Y,
log_lik,
permutations = 1,
r_eff =1,
cores = getOption("mc.cores”, 1)
)
S3 method for class 'matrix'
scrps(x, x2, y, ..., permutations = 1)
S3 method for class 'numeric'
scrps(x, x2, y, ..., permutations = 1)
S3 method for class 'matrix'
loo_scrps(
X ’
X2,
Y,
log_lik,
permutations = 1,
r_eff =1,
cores = getOption("mc.cores”, 1)
)
Arguments
X A S by N matrix (draws by observations), or a vector of length S when only
single observation is provided in y.
Passed on to E_loo() in the 1oo_*() version of these functions.
X2 Independent draws from the same distribution as draws in x. Should be of the

identical dimension.

y A vector of observations or a single value.

crps

permutations

log_lik
r_eff

cores

Details

An integer, with default value of 1, specifying how many times the expected
value of IX - X’| (|x - x2[) is computed. The row order of x2 is shuffled as
elements x and x2 are typically drawn given the same values of parameters. This
happens, e.g., when one calls posterior_predict() twice for a fitted rstan-
arm or brms model. Generating more permutations is expected to decrease the
variance of the computed expected value.

A log-likelihood matrix the same size as x.

An optional vector of relative effective sample size estimates containing one
element per observation. See psis() for details.

The number of cores to use for parallelization of [psis()]. See psis() for
details.

To compute (S)CRPS, the user needs to provide two sets of draws, x and x2, from the predictive
distribution. This is due to the fact that formulas used to compute CRPS involve an expectation
of the absolute difference of x and x2, both having the same distribution. See the permutations
argument, as well as Gneiting and Raftery (2007) for details.

Value

A list containing two elements: estimates and pointwise. The former reports estimator and
standard error and latter the pointwise values.

References

Bolin, D., & Wallin, J. (2022). Local scale invariance and robustness of proper scoring rules. arXiv.
doi:10.48550/arXiv.1912.05642

Gneiting, T., & Raftery, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation.
Journal of the American Statistical Association, 102(477), 359-378.

Examples

Not run:

An example using rstanarm

library(rstanarm)
data("kidig")

fit <- stan_glm(kid_score ~ mom_hs + mom_iq, data = kidiq)
ypredl <- posterior_predict(fit)
ypred2 <- posterior_predict(fit)
crps(ypredl, ypred2, y = fit$y)
loo_crps(ypredil, ypred2, y = fit$y, log_lik = log_lik(fit))

End(Not run)

https://doi.org/10.48550/arXiv.1912.05642

10 elpd

elpd Generic (expected) log-predictive density

Description

The elpd() methods for arrays and matrices can compute the expected log pointwise predictive
density for a new dataset or the log pointwise predictive density of the observed data (an overesti-

mate of the elpd).
Usage
elpd(x, ...)

S3 method for class 'array'
elpd(x, ...)

S3 method for class 'matrix'

elpd(x, ...)
Arguments
X A log-likelihood array or matrix. The Methods (by class) section, below, has
detailed descriptions of how to specify the inputs for each method.
Currently ignored.
Details

The elpd() function is an S3 generic and methods are provided for 3-D pointwise log-likelihood
arrays and matrices.

Methods (by class)

* elpd(array): An I by C by N array, where [is the number of MCMC iterations per chain,
C' is the number of chains, and N is the number of data points.

e elpd(matrix): An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and NV is the number of data points.

See Also
The vignette Holdout validation and K-fold cross-validation of Stan programs with the loo package
for demonstrations of using the elpd() methods.

Examples

Calculate the 1lpd of the observed data
LLarr <- example_loglik_array()
elpd(LLarr)

example_loglik_array 11

example_loglik_array Objects to use in examples and tests

Description

Example pointwise log-likelihood objects to use in demonstrations and tests. See the Value and
Examples sections below.

Usage
example_loglik_array()

example_loglik_matrix()

Value

example_loglik_array() returns a 500 (draws) x 2 (chains) x 32 (observations) pointwise log-
likelihood array.

example_loglik_matrix() returns the same pointwise log-likelihood values as example_loglik_array()
but reshaped into a 1000 (draws*chains) x 32 (observations) matrix.

Examples

LLarr <- example_loglik_array()
(dim_arr <- dim(LLarr))
LLmat <- example_loglik_matrix()
(dim_mat <- dim(LLmat))

all.equal(dim_mat[1], dim_arr[1] % dim_arr[2])
all.equal(dim_mat[2], dim_arr[3])

all.equal(LLarr[, 1, 1, LLmat[1:500, 1)
all.equal(LLarr[, 2, 1, LLmat[501:1000, 1)

extract_log_lik Extract pointwise log-likelihood from a Stan model

Description

Convenience function for extracting the pointwise log-likelihood matrix or array from a stanfit
object from the rstan package. Note: recent versions of rstan now include a loo() method for
stanfit objects that handles this internally.

Usage

extract_log_lik(stanfit, parameter_name = "log_lik"”, merge_chains = TRUE)

12 E loo

Arguments

stanfit A stanfit object (rstan package).

parameter_name A character string naming the parameter (or generated quantity) in the Stan
model corresponding to the log-likelihood.

merge_chains If TRUE (the default), all Markov chains are merged together (i.e., stacked) and a
matrix is returned. If FALSE they are kept separate and an array is returned.

Details

Stan does not automatically compute and store the log-likelihood. It is up to the user to incorporate
it into the Stan program if it is to be extracted after fitting the model. In a Stan model, the pointwise
log likelihood can be coded as a vector in the transformed parameters block (and then summed up
in the model block) or it can be coded entirely in the generated quantities block. We recommend
using the generated quantities block so that the computations are carried out only once per iteration
rather than once per HMC leapfrog step.

For example, the following is the generated quantities block for computing and saving the
log-likelihood for a linear regression model with N data points, outcome y, predictor matrix X,
coefficients beta, and standard deviation sigma:

vector[N] log_lik;

for (nin 1:N) log_lik[n] =normal_lpdf(y[n] | X[n,] * beta, sigma);

Value

If merge_chains=TRUE, an S by /N matrix of (post-warmup) extracted draws, where S is the size
of the posterior sample and NV is the number of data points. If merge_chains=FALSE, an I by C' by
N array, where [x C' = S.

References

Stan Development Team (2017). The Stan C++ Library, Version 2.16.0. https://mc-stan.org/

Stan Development Team (2017). RStan: the R interface to Stan, Version 2.16.1. https://mc-stan.
org/

E_loo Compute weighted expectations

Description

The E_loo() function computes weighted expectations (means, variances, quantiles) using the im-
portance weights obtained from the PSIS smoothing procedure. The expectations estimated by the
E_loo() function assume that the PSIS approximation is working well. A small Pareto k estimate
is necessary, but not sufficient, for E_loo() to give reliable estimates. Additional diagnostic
checks for gauging the reliability of the estimates are in development and will be added in a future
release.

https://mc-stan.org/
https://mc-stan.org/
https://mc-stan.org/

E loo 13

Usage

E_loo(x, psis_object, ...)

Default S3 method:
E_loo(

X,

psis_object,

L

type = c("mean”, "variance"”, "sd", "quantile"),

probs = NULL,

log_ratios = NULL
)
S3 method for class 'matrix'
E_loo(

X,

psis_object,

type = c("mean”, "variance”, "sd", "quantile"),

probs = NULL,
log_ratios = NULL
)
Arguments
X A numeric vector or matrix.

psis_object An object returned by psis().

Arguments passed to individual methods.

type The type of expectation to compute. The options are "mean”, "variance”,
"sd", and "quantile”.

probs For computing quantiles, a vector of probabilities.

log_ratios Optionally, a vector or matrix (the same dimensions as x) of raw (not smoothed)

log ratios. If working with log-likelihood values, the log ratios are the nega-
tive of those values. If log_ratios is specified we are able to compute more
accurate Pareto k diagnostics specific to E_1oo().

Value
A named list with the following components:

value The result of the computation.
For the matrix method, value is a vector with ncol(x) elements, with one exception: when
type="quantile” and multiple values are specified in probs the value component of the
returned object is a length(probs) by ncol (x) matrix.
For the default/vector method the value component is scalar, with one exception: when
type="quantile"” and multiple values are specified in probs the value component is a vector
with length(probs) elements.

14 E loo

pareto_k Function-specific diagnostic.

For the matrix method it will be a vector of length ncol (x) containing estimates of the shape
parameter k of the generalized Pareto distribution. For the default/vector method, the estimate
is a scalar. If log_ratios is not specified when calling E_loo(), the smoothed log-weights
are used to estimate Pareto-k’s, which may produce optimistic estimates.

For type="mean"”, type="var", and type="sd", the returned Pareto-k is usually the maxi-
mum of the Pareto-k’s for the left and right tail of hr and the right tail of r, where r is the
importance ratio and h = z for type="mean"” and h = x2 for type="var” and type="sd".
If h is binary, constant, or not finite, or if type="quantile”, the returned Pareto-k is the
Pareto-k for the right tail of r.

Examples

if (requireNamespace(”rstanarm”, quietly = TRUE)) {

Use rstanarm package to quickly fit a model and get both a log-likelihood
matrix and draws from the posterior predictive distribution
library("rstanarm™)

data from help("1lm")
ctl <- c(4.17,5.58,5.18,6.
trt <- c(4.81,4.17,4.41,3.
d <- data.frame(
weight = c(ctl, trt),
group = gl(2, 10, 20, labels = c("Ctl","Trt"))
)
fit <- stan_glm(weight ~ group, data = d, refresh = @)
yrep <- posterior_predict(fit)
dim(yrep)

11,4.50,4.
59,5.87,3.

5 6
87,3.8

ity
o ;g

log_ratios <- -1 * log_lik(fit)
dim(log_ratios)

r_eff <- relative_eff(exp(-log_ratios), chain_id = rep(1:4, each = 1000))
psis_object <- psis(log_ratios, r_eff = r_eff, cores = 2)

E_loo(yrep, psis_object, type = "mean")
E_loo(yrep, psis_object, type = "var")
E_loo(yrep, psis_object, type = "sd")

E_loo(yrep, psis_object, type = "quantile”, probs
E_loo(yrep, psis_object, type = "quantile"”, probs

0.5) # median
c(0.1, 0.9))

We can get more accurate Pareto k diagnostic if we also provide
the log_ratios argument
E_loo(yrep, psis_object, type = "mean”, log_ratios = log_ratios)

}

gpdfit 15

gpdfit Estimate parameters of the Generalized Pareto distribution

Description

Given a sample x, Estimate the parameters k£ and o of the generalized Pareto distribution (GPD),
assuming the location parameter is 0. By default the fit uses a prior for £, which will stabilize esti-
mates for very small sample sizes (and low effective sample sizes in the case of MCMC samples).
The weakly informative prior is a Gaussian prior centered at 0.5.

Usage

gpdfit(x, wip = TRUE, min_grid_pts = 30, sort_x = TRUE)

Arguments
X A numeric vector. The sample from which to estimate the parameters.
wip Logical indicating whether to adjust k based on a weakly informative Gaussian

prior centered on 0.5. Defaults to TRUE.

min_grid_pts The minimum number of grid points used in the fitting algorithm. The actual
number used is min_grid_pts + floor(sqrt(length(x))).

sort_x If TRUE (the default), the first step in the fitting algorithm is to sort the elements
of x. If x is already sorted in ascending order then sort_x can be set to FALSE
to skip the initial sorting step.

Details

Here the parameter k is the negative of k in Zhang & Stephens (2009).

Value

A named list with components k and sigma.

References
Zhang, J., and Stephens, M. A. (2009). A new and efficient estimation method for the generalized
Pareto distribution. Technometrics 51, 316-325.

See Also

psis(), pareto-k-diagnostic

16 importance_sampling

importance_sampling A parent class for different importance sampling methods.

Description

A parent class for different importance sampling methods.
Usage
importance_sampling(log_ratios, method, ...)

S3 method for class 'array'
importance_sampling(

log_ratios,

method,

r_eff =1,

cores = getOption("mc.cores”, 1)

)

S3 method for class 'matrix'
importance_sampling(

log_ratios,
method,
r_eff =1,
cores = getOption("mc.cores”, 1)
)
Default S3 method:
importance_sampling(log_ratios, method, ..., r_eff = 1)
Arguments
log_ratios An array, matrix, or vector of importance ratios on the log scale (for PSIS-LOO

these are negative log-likelihood values). See the Methods (by class) section
below for a detailed description of how to specify the inputs for each method.

method The importance sampling method to use. The following methods are imple-
mented:
* "psis”: Pareto-Smoothed Importance Sampling (PSIS). Default method.

e "tis": Truncated Importance Sampling (TIS) with truncation at sqrt(S),
where S is the number of posterior draws.

e "sis"”: Standard Importance Sampling (SIS).

Arguments passed on to the various methods.

kfold-generic

r_eff

cores

17

Vector of relative effective sample size estimates containing one element per ob-
servation. The values provided should be the relative effective sample sizes of
1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency
of estimating the normalizing term in self-normalizing importance sampling. If
r_eff is not provided then the reported PSIS effective sample sizes and Monte
Carlo error estimates can be over-optimistic. If the posterior draws are (near)
independent then r_eff=1 can be used. r_eff has to be a scalar (same value
is used for all observations) or a vector with length equal to the number of ob-
servations. The default value is 1. See the relative_eff () helper function for
computing r_eff.

The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until 1oo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

kfold-generic

Generic function for K-fold cross-validation for developers

Description

For developers of Bayesian modeling packages, loo includes a generic function kfold() so that
methods may be defined for K-fold CV without name conflicts between packages. See, for example,
the kfold() methods in the rstanarm and brms packages.

The Value section below describes the objects that kfold() methods should return in order to be
compatible with 1loo_compare () and the loo package print methods.

Usage

kfold(x,

is.kfold(x)

Arguments

X

.2

A fitted model object.

Arguments to pass to specific methods.

https://github.com/stan-dev/loo/issues/94

18 kfold-helpers

Value

For developers defining a kfold() method for a class "foo", the kfold.foo() function should
return a list with class c("kfold”, "loo") with at least the following named elements:

* "estimates”: A 1x2 matrix containing the ELPD estimate and its standard error. The matrix
must have row name "elpd_kfold" and column names "Estimate” and "SE".

e "pointwise”: A Nx1 matrix with column name "elpd_kfold" containing the pointwise con-
tributions for each data point.

It is important for the object to have at least these classes and components so that it is compatible
with other functions like 1oo_compare() and print() methods.

kfold-helpers Helper functions for K-fold cross-validation

Description

These functions can be used to generate indexes for use with K-fold cross-validation. See the
Details section for explanations.

Usage
kfold_split_random(K = 10, N = NULL)

kfold_split_stratified(K = 10, x = NULL)

kfold_split_grouped(K = 10, x = NULL)

Arguments
K The number of folds to use.
N The number of observations in the data.
X A discrete variable of length N with at least K levels (unique values). Will be
coerced to a factor.
Details

kfold_split_random() splits the data into K groups of equal size (or roughly equal size).

For a categorical variable x kfold_split_stratified() splits the observations into K groups en-
suring that relative category frequencies are approximately preserved.

For a grouping variable x, kfold_split_grouped() places all observations in x from the same
group/level together in the same fold. The selection of which groups/levels go into which fold
(relevant when when there are more groups than folds) is randomized.

Value

An integer vector of length N where each element is an index in 1:K.

loo 19

Examples

ids <- kfold_split_random(K = 5, N = 20)
print(ids)
table(ids)

x <- sample(c(@, 1), size = 200, replace = TRUE, prob = c(0.05, 0.95))
table(x)

ids <- kfold_split_stratified(K = 5, x = x)

print(ids)

table(ids, x)

grp <- gl(n = 50, k = 15, labels = state.name)
length(grp)
head(table(grp))

ids_10 <- kfold_split_grouped(K = 10, x = grp)
(tab_10 <- table(grp, ids_10))
colSums(tab_10)

ids_9 <- kfold_split_grouped(K = 9, x = grp)
(tab_9 <- table(grp, ids_9))
colSums(tab_9)

loo Efficient approximate leave-one-out cross-validation (LOO)

Description

The loo() methods for arrays, matrices, and functions compute PSIS-LOO CV, efficient approxi-
mate leave-one-out (LOO) cross-validation for Bayesian models using Pareto smoothed importance
sampling (PSIS). This is an implementation of the methods described in Vehtari, Gelman, and Gabry
(2017) and Vehtari, Simpson, Gelman, Yao, and Gabry (2024).

The loo_i() function enables testing log-likelihood functions for use with the 1loo.function()
method.

Usage
loo(x, ...)

S3 method for class 'array'
loo(
X,
r_eff =1,
save_psis = FALSE,
cores = getOption("mc.cores”, 1),

20 loo

is_method = c("psis”, "tis", "sis")
)
S3 method for class 'matrix'
loo(

X’

r_eff =1,

save_psis = FALSE,
cores = getOption("mc.cores”, 1),

is_method = c("psis", "tis"”, "sis")
)
S3 method for class '“function™'
loo(

X,

data = NULL,

draws = NULL,

r_eff =1,

save_psis = FALSE,
cores = getOption("mc.cores”, 1),

is_method = c("psis”, "tis", "sis")

)

loo_i(i, 1lfun, ..., data = NULL, draws = NULL, r_eff = 1, is_method = "psis")

is.loo(x)

is.psis_loo(x)

Arguments

X A log-likelihood array, matrix, or function. The Methods (by class) section,
below, has detailed descriptions of how to specify the inputs for each method.

r_eff Vector of relative effective sample size estimates for the likelihood (exp(log_lik))
of each observation. This is related to the relative efficiency of estimating the
normalizing term in self-normalized importance sampling when using poste-
rior draws obtained with MCMC. If MCMC draws are used and r_eff is not
provided then the reported PSIS effective sample sizes and Monte Carlo error
estimates can be over-optimistic. If the posterior draws are (near) independent
then r_eff=1 can be used. r_eff has to be a scalar (same value is used for all
observations) or a vector with length equal to the number of observations. The
default value is 1. See the relative_eff () helper functions for help computing
r_eff.

save_psis Should the psis object created internally by 1oo() be saved in the returned ob-

ject? The loo() function calls psis() internally but by default discards the
(potentially large) psis object after using it to compute the LOO-CV sum-

loo 21

maries. Setting save_psis=TRUE will add a psis_object component to the
list returned by loo. This is useful if you plan to use the E_loo() function
to compute weighted expectations after running loo. Several functions in the
bayesplot package also accept psis objects.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option 1oo. cores is now deprecated but will be given prece-
dence over mc.cores until 1oo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

is_method The importance sampling method to use. The following methods are imple-
mented:
* "psis”: Pareto-Smoothed Importance Sampling (PSIS). Default method.

e "tis": Truncated Importance Sampling (TIS) with truncation at sqrt(S),
where S is the number of posterior draws.

* "sis": Standard Importance Sampling (SIS).
data, draws, ... For the loo.function() method and the loo_i() function, these are the data,

posterior draws, and other arguments to pass to the log-likelihood function. See
the Methods (by class) section below for details on how to specify these argu-

ments.
i For 1oo_i(), an integer in 1:N.
11fun For 1loo_i(), the same as x for the 1oo. function() method. A log-likelihood

function as described in the Methods (by class) section.

Details

The loo() function is an S3 generic and methods are provided for 3-D pointwise log-likelihood
arrays, pointwise log-likelihood matrices, and log-likelihood functions. The array and matrix meth-
ods are the most convenient, but for models fit to very large datasets the loo. function() method
is more memory efficient and may be preferable.

Value
The 1oo() methods return a named list with class c("psis_loo"”, "1oo") and components:

estimates A matrix with two columns (Estimate, SE) and three rows (elpd_loo, p_loo, looic).
This contains point estimates and standard errors of the expected log pointwise predictive
density (elpd_loo), the effective number of parameters (p_loo) and the LOO information
criterion looic (which is just -2 * elpd_loo, i.e., converted to deviance scale).

pointwise A matrix with five columns (and number of rows equal to the number of observations)
containing the pointwise contributions of the measures (elpd_loo, mcse_elpd_loo, p_loo,
looic, influence_pareto_k). in addition to the three measures in estimates, we also report
pointwise values of the Monte Carlo standard error of elpd_loo (mcse_elpd_loo), and statis-
tics describing the influence of each observation on the posterior distribution (influence_pareto_k).

https://github.com/stan-dev/loo/issues/94

22 loo

These are the estimates of the shape parameter k of the generalized Pareto fit to the importance
ratios for each leave-one-out distribution (see the pareto-k-diagnostic page for details).

diagnostics A named list containing two vectors:

» pareto_k: Importance sampling reliability diagnostics. By default, these are equal to the
influence_pareto_k in pointwise. Some algorithms can improve importance sam-
pling reliability and modify these diagnostics. See the pareto-k-diagnostic page for de-
tails.

* n_eff: PSIS effective sample size estimates.

psis_object This component will be NULL unless the save_psis argument is set to TRUE when
calling 1loo(). In that case psis_object will be the object of class "psis” that is created
when the 1oo() function calls psis() internally to do the PSIS procedure.

The loo_i() function returns a named list with components pointwise and diagnostics. These
components have the same structure as the pointwise and diagnostics components of the object
returned by 1loo() except they contain results for only a single observation.

Methods (by class)

e loo(array): An I by C by N array, where [is the number of MCMC iterations per chain, C
is the number of chains, and [V is the number of data points.

* loo(matrix): An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and NV is the number of data points.

* loo(" function™): A function f() that takes arguments data_i and draws and returns a
vector containing the log-likelihood for a single observation i evaluated at each posterior
draw. The function should be written such that, for each observation i in 1:N, evaluating

f(data_i = datal[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.

If using the function method then the arguments data and draws must also be specified in the
call to 1loo():

— data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

— draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

— The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

Defining 1oo() methods in a package

Package developers can define 1oo() methods for fitted models objects. See the example 1oo.stanfit()
method in the Examples section below for an example of defining a method that calls 1loo.array().

The loo. stanreg() method in the rstanarm package is an example of defining a method that calls
loo. function().

loo 23

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

See Also

* The loo package vignettes for demonstrations.

The FAQ page on the loo website for answers to frequently asked questions.

psis() for the underlying Pareto Smoothed Importance Sampling (PSIS) procedure used in
the LOO-CV approximation.

pareto-k-diagnostic for convenience functions for looking at diagnostics.

loo_compare() for model comparison.

Examples

Array and matrix methods (using example objects included with loo package)
Array method

LLarr <- example_loglik_array()

rel_n_eff <- relative_eff(exp(LLarr))

loo(LLarr, r_eff = rel_n_eff, cores = 2)

Matrix method

LLmat <- example_loglik_matrix()

rel_n_eff <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
loo(LLmat, r_eff = rel_n_eff, cores = 2)

Using log-likelihood function instead of array or matrix
set.seed(124)

Simulate data and draw from posterior

<- 50; K<-10; S <- 100; a0 <- 3; b0 <- 2
<- rbeta(1, a0, bo)

<- rbinom(N, size = K, prob = p)

a <- ad + sum(y); b <- b0 + N x K - sum(y)
fake_posterior <- as.matrix(rbeta(S, a, b))
dim(fake_posterior) # S x 1

fake_data <- data.frame(y,K)

dim(fake_data) # N x 2

< T Z H

11fun <- function(data_i, draws) {
each time called internally within loo the arguments will be equal to:
data_i: ith row of fake_data (fake_datal[i,, drop=FALSE])
draws: entire fake_posterior matrix
dbinom(data_i$y, size = data_i$K, prob = draws, log = TRUE)
3

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html
https://mc-stan.org/loo/articles/index.html
https://mc-stan.org/loo/articles/online-only/faq.html

24

loo

Use the loo_i function to check that 11fun works on a single observation

before running on all obs. For example, using the 3rd obs in the data:

loo_3 <- loo_i(i = 3, 1llfun = 1l1lfun, data = fake_data, draws = fake_posterior)
print(loo_3$pointwise[, "elpd_loo"])

Use loo.function method (default r_eff=1 is used as this posterior not obtained via MCMC)
loo_with_fn <- loo(llfun, draws = fake_posterior, data = fake_data)

If we look at the elpd_loo contribution from the 3rd obs it should be the
same as what we got above with the loo_i function and i=3:
print(loo_with_fn$pointwise[3, "elpd_loo"])

print(loo_3$pointwise[, "elpd_loo"])

Check that the loo.matrix method gives same answer as loo.function method
log_lik_matrix <- sapply(1:N, function(i) {
11fun(data_i = fake_datal[i,, drop=FALSE], draws = fake_posterior)
»
loo_with_mat <- loo(log_lik_matrix)
all.equal(loo_with_mat$estimates, loo_with_fn$estimates) # should be TRUE!

Not run:
For package developers: defining loo methods

An example of a possible loo method for 'stanfit' objects (rstan package).
A similar method is included in the rstan package.
In order for users to be able to call loo(stanfit) instead of
loo.stanfit(stanfit) the NAMESPACE needs to be handled appropriately
(roxygen2 and devtools packages are good for that).
#
loo.stanfit <-
function(x,
pars = "log_lik",
save_psis = FALSE,
cores = getOption("mc.cores”, 1)) {
stopifnot(length(pars) == 1L)
LLarray <- loo::extract_log_lik(stanfit = x,
parameter_name = pars,
merge_chains = FALSE)
r_eff <- loo::relative_eff(x = exp(LLarray), cores = cores)
loo::loo.array(LLarray,
r_eff = r_eff,
cores = cores,
save_psis = save_psis)

}

End(Not run)

loo-datasets 25

loo-datasets Datasets for loo examples and vignettes

Description

Small datasets for use in loo examples and vignettes. The K1ine and milk datasets are also included
in the rethinking package (McElreath, 2016a), but we include them here as rethinking is not on
CRAN.

Details

Currently the data sets included are:

e Kline: Small dataset from Kline and Boyd (2010) on tool complexity and demography in
Oceanic islands societies. This data is discussed in detail in McElreath (2016a,2016b). (Link
to variable descriptions)

* milk: Small dataset from Hinde and Milligan (2011) on primate milk composition.This data
is discussed in detail in McElreath (2016a,2016b). (Link to variable descriptions)

e voice: Voice rehabilitation data from Tsanas et al. (2014).

References

Hinde and Milligan. 2011. Evolutionary Anthropology 20:9-23.
Kline, M.A. and R. Boyd. 2010. Proc R Soc B 277:2559-2564.
McElreath, R. (2016a). rethinking: Statistical Rethinking book package. R package version 1.59.

McElreath, R. (2016b). Statistical rethinking: A Bayesian course with examples in R and Stan.
Chapman & Hall/CRC.

A. Tsanas, M.A. Little, C. Fox, L.O. Ramig: Objective automatic assessment of rehabilitative
speech treatment in Parkinson’s disease, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, Vol. 22, pp. 181-190, January 2014

Examples

str(Kline)
str(milk)

https://www.rdocumentation.org/packages/rethinking/versions/1.59/topics/Kline
https://www.rdocumentation.org/packages/rethinking/versions/1.59/topics/Kline
https://www.rdocumentation.org/packages/rethinking/versions/1.59/topics/milk

26 loo-glossary

loo-glossary LOO package glossary

Description

The pages provides definitions to key terms. Also see the FAQ page on the loo website for answers
to frequently asked questions.

Note: VGG2017 refers to Vehtari, Gelman, and Gabry (2017). See References, below.

ELPD and elpd_loo

The ELPD is the theoretical expected log pointwise predictive density for a new dataset (Eq 1 in
VGG2017), which can be estimated, e.g., using cross-validation. elpd_loo is the Bayesian LOO
estimate of the expected log pointwise predictive density (Eq 4 in VGG2017) and is a sum of N
individual pointwise log predictive densities. Probability densities can be smaller or larger than 1,
and thus log predictive densities can be negative or positive. For simplicity the ELPD acronym is
used also for expected log pointwise predictive probabilities for discrete models. Probabilities are
always equal or less than 1, and thus log predictive probabilities are O or negative.

Standard error of elpd_loo

As elpd_loo is defined as the sum of N independent components (Eq 4 in VGG2017), we can
compute the standard error by using the standard deviation of the N components and multiplying by
sqrt(N) (Eq 23 in VGG2017). This standard error is a coarse description of our uncertainty about
the predictive performance for unknown future data. When N is small or there is severe model
misspecification, the current SE estimate is overoptimistic and the actual SE can even be twice as
large. Even for moderate N, when the SE estimate is an accurate estimate for the scale, it ignores the
skewness. When making model comparisons, the SE of the component-wise (pairwise) differences
should be used instead (see the se_diff section below and Eq 24 in VGG2017). Sivula et al. (2022)
discuss the conditions when the normal approximation used for SE and se_diff is good.

Monte Carlo SE of elpd_loo

The Monte Carlo standard error is the estimate for the computational accuracy of MCMC and im-
portance sampling used to compute elpd_loo. Usually this is negligible compared to the standard
describing the uncertainty due to finite number of observations (Eq 23 in VGG2017).

p_loo (effective number of parameters)

p_loo is the difference between elpd_loo and the non-cross-validated log posterior predictive den-
sity. It describes how much more difficult it is to predict future data than the observed data. Asymp-
totically under certain regularity conditions, p_loo can be interpreted as the effective number of
parameters. In well behaving cases p_loo <N and p_loo < p, where p is the total number of pa-
rameters in the model. p_loo >N or p_loo > p indicates that the model has very weak predictive
capability and may indicate a severe model misspecification. See below for more on interpreting
p_loo when there are warnings about high Pareto k diagnostic values.

https://mc-stan.org/loo/articles/online-only/faq.html

loo-glossary 27

Pareto k estimates

The Pareto k estimate is a diagnostic for Pareto smoothed importance sampling (PSIS), which is
used to compute components of elpd_loo. In importance-sampling LOO the full posterior distri-
bution is used as the proposal distribution. The Pareto k diagnostic estimates how far an individual
leave-one-out distribution is from the full distribution. If leaving out an observation changes the
posterior too much then importance sampling is not able to give a reliable estimate. Pareto smooth-
ing stabilizes importance sampling and guarantees a finite variance estimate at the cost of some
bias.

The diagnostic threshold for Pareto & depends on sample size S (sample size dependent threshold
was introduced by Vehtari et al., 2024, and before that fixed thresholds of 0.5 and 0.7 were recom-
mended). For simplicity, 1oo package uses the nominal sample size S when computing the sample
size specific threshold. This provides an optimistic threshold if the effective sample size is less than
2200, but even then if ESS/S > 1/2 the difference is usually negligible. Thinning of MCMC draws
can be used to improve the ratio ESS/S.

o If £ < min(1 — 1/logy((S),0.7), where S is the sample size, the PSIS estimate and the
corresponding Monte Carlo standard error estimate are reliable.

e If1-1/1log,((S) <=k < 0.7, the PSIS estimate and the corresponding Monte Carlo standard
error estimate are not reliable, but increasing the (effective) sample size .S above 2200 may
help (this will increase the sample size specific threshold (1 — 1/log;(2200) > 0.7 and then
the bias specific threshold 0.7 dominates).

e If 0.7 <= k < 1, the PSIS estimate and the corresponding Monte Carlo standard error have
large bias and are not reliable. Increasing the sample size may reduce the variability in the k
estimate, which may also result in a lower k estimate.

o If £ > 1, the target distribution is estimated to have non-finite mean. The PSIS estimate and
the corresponding Monte Carlo standard error are not well defined. Increasing the sample size
may reduce the variability in k& estimate, which may also result in a lower k estimate.

Pareto k is also useful as a measure of influence of an observation. Highly influential observations
have high k values. Very high k values often indicate model misspecification, outliers or mistakes
in data processing. See Section 6 of Gabry et al. (2019) for an example.

Interpreting p_loo when Pareto k is large: If £ > 0.7 then we can also look at the p_loo
estimate for some additional information about the problem:

e If p_loo << p (the total number of parameters in the model), then the model is likely to be
misspecified. Posterior predictive checks (PPCs) are then likely to also detect the problem.
Try using an overdispersed model, or add more structural information (nonlinearity, mixture
model, etc.).

 If p_loo < p and the number of parameters p is relatively large compared to the number of
observations (e.g., p>N/5), it is likely that the model is so flexible or the population prior
so weak that it’s difficult to predict the left out observation (even for the true model). This
happens, for example, in the simulated 8 schools (in VGG2017), random effect models with
a few observations per random effect, and Gaussian processes and spatial models with short
correlation lengths.

* If p_loo > p, then the model is likely to be badly misspecified. If the number of parame-
ters p<<N, then PPCs are also likely to detect the problem. See the case study at https:
//avehtari.github.io/modelselection/roaches.html for an example. If p is relatively

https://avehtari.github.io/modelselection/roaches.html
https://avehtari.github.io/modelselection/roaches.html

28 loo_approximate_posterior

large compared to the number of observations, say p>N/5 (more accurately we should count
number of observations influencing each parameter as in hierarchical models some groups
may have few observations and other groups many), it is possible that PPCs won’t detect the
problem.

elpd_diff

elpd_diff is the difference in elpd_loo for two models. If more than two models are compared,
the difference is computed relative to the model with highest elpd_loo.

se_diff

The standard error of component-wise differences of elpd_loo (Eq 24 in VGG2017) between two
models. This SE is smaller than the SE for individual models due to correlation (i.e., if some
observations are easier and some more difficult to predict for all models).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

Sivula, T, Magnusson, M., Matamoros A. A., and Vehtari, A. (2022). Uncertainty in Bayesian
leave-one-out cross-validation based model comparison. preprint arXiv:2008.10296v3..

Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in
Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378 (journal version,
preprint arXiv:1709.01449, code on GitHub)

loo_approximate_posterior
Efficient approximate leave-one-out cross-validation (LOO) for poste-
rior approximations

Description

Efficient approximate leave-one-out cross-validation (LOO) for posterior approximations

Usage

loo_approximate_posterior(x, log_p, log_g, ...)

S3 method for class 'array'
loo_approximate_posterior(

X)

log_p,

log_g,

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html
https://arxiv.org/abs/2008.10296v3
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378
https://arxiv.org/abs/1709.01449
https://github.com/jgabry/bayes-vis-paper

loo_approximate_posterior 29

save_psis = FALSE,
cores = getOption("mc.cores”, 1)

)

S3 method for class 'matrix'
loo_approximate_posterior(

X,

log_p,

log_g,

save_psis = FALSE,

cores = getOption("mc.cores”, 1)

)

S3 method for class '~function™'
loo_approximate_posterior(

X’

data = NULL,
draws = NULL,
log_p = NULL,
log_g = NULL,

save_psis = FALSE,
cores = getOption("mc.cores"”, 1)

)
Arguments

X A log-likelihood array, matrix, or function. The Methods (by class) section,
below, has detailed descriptions of how to specify the inputs for each method.

log_p The log-posterior (target) evaluated at S samples from the proposal distribution
(g). A vector of length S.

log_g The log-density (proposal) evaluated at S samples from the proposal distribution
(g)- A vector of length S.

save_psis Should the "psis” object created internally by loo_approximate_posterior()
be saved in the returned object? See loo() for details.

cores The number of cores to use for parallelization. This defaults to the option

mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option 1oo. cores is now deprecated but will be given prece-
dence over mc.cores until 1oo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

https://github.com/stan-dev/loo/issues/94

30

Details

Value

loo_approximate_posterior

data, draws, ... Forthe loo_approximate_posterior.function() method, these are the data,

posterior draws, and other arguments to pass to the log-likelihood function. See
the Methods (by class) section below for details on how to specify these argu-
ments.

The loo_approximate_posterior() function is an S3 generic and methods are provided for 3-
D pointwise log-likelihood arrays, pointwise log-likelihood matrices, and log-likelihood functions.
The implementation works for posterior approximations where it is possible to compute the log
density for the posterior approximation.

The loo_approximate_posterior() methods return a named list with class c("psis_loo_ap”,
"psis_loo"”, "loo"). It has the same structure as the objects returned by loo() but with the
additional slot:

posterior_approximation A list with two vectors, log_p and log_g of the same length contain-

ing the posterior density and the approximation density for the individual draws.

Methods (by class)

* loo_approximate_posterior(array): An I by C by N array, where [is the number of

MCMC iterations per chain, C' is the number of chains, and NV is the number of data points.

loo_approximate_posterior(matrix): An S by N matrix, where S is the size of the pos-
terior sample (with all chains merged) and NV is the number of data points.

loo_approximate_posterior(~function™): A function f() that takes arguments data_i
and draws and returns a vector containing the log-likelihood for a single observation i evalu-
ated at each posterior draw. The function should be written such that, for each observation i
in 1:N, evaluating

f(data_i = datali,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.

If using the function method then the arguments data and draws must also be specified in the
call to 1loo():

— data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

— draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

— The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

loo_compare 31

References

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2019). Leave-One-Out Cross-
Validation for Large Data. In Thirty-sixth International Conference on Machine Learning, PMLR
97:4244-4253.

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2020). Leave-One-Out Cross-
Validation for Model Comparison in Large Data. In Proceedings of the 23rd International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), PMLR 108:341-351.

See Also

loo(), psis(), loo_compare()

loo_compare Model comparison

Description

Compare fitted models based on ELPD.

By default the print method shows only the most important information. Use print (..., simplify=FALSE)
to print a more detailed summary.

Usage
loo_compare(x, ...)

Default S3 method:
loo_compare(x, ...)

S3 method for class 'compare.loo'
print(x, ..., digits = 1, simplify = TRUE)

S3 method for class 'compare.loo_ss'

print(x, ..., digits = 1, simplify = TRUE)
Arguments
X An object of class "100" or a list of such objects. If a list is used then the list

names will be used as the model names in the output. See Examples.
Additional objects of class "1o0", if not passed in as a single list.
digits For the print method only, the number of digits to use when printing.

simplify For the print method only, should only the essential columns of the summary
matrix be printed? The entire matrix is always returned, but by default only the
most important columns are printed.

32 loo_compare

Details

When comparing two fitted models, we can estimate the difference in their expected predictive
accuracy by the difference in elpd_loo or elpd_waic (or multiplied by —2, if desired, to be on the
deviance scale).

When using loo_compare(), the returned matrix will have one row per model and several columns
of estimates. The values in the elpd_diff and se_diff columns of the returned matrix are com-
puted by making pairwise comparisons between each model and the model with the largest ELPD
(the model in the first row). For this reason the elpd_diff column will always have the value @
in the first row (i.e., the difference between the preferred model and itself) and negative values in
subsequent rows for the remaining models.

To compute the standard error of the difference in ELPD — which should not be expected to equal
the difference of the standard errors — we use a paired estimate to take advantage of the fact that
the same set of N data points was used to fit both models. These calculations should be most
useful when NV is large, because then non-normality of the distribution is not such an issue when
estimating the uncertainty in these sums. These standard errors, for all their flaws, should give a
better sense of uncertainty than what is obtained using the current standard approach of comparing
differences of deviances to a Chi-squared distribution, a practice derived for Gaussian linear models
or asymptotically, and which only applies to nested models in any case. Sivula et al. (2022) discuss
the conditions when the normal approximation used for SE and se_diff is good.

If more than 11 models are compared, we internally recompute the model differences using the me-
dian model by ELPD as the baseline model. We then estimate whether the differences in predictive
performance are potentially due to chance as described by McLatchie and Vehtari (2023). This will
flag a warning if it is deemed that there is a risk of over-fitting due to the selection process. In
that case users are recommended to avoid model selection based on LOO-CYV, and instead to favor
model averaging/stacking or projection predictive inference.

Value

A matrix with class "compare.loo” that has its own print method. See the Details section.

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

Sivula, T, Magnusson, M., Matamoros A. A., and Vehtari, A. (2022). Uncertainty in Bayesian
leave-one-out cross-validation based model comparison. preprint arXiv:2008.10296v3..

McLatchie, Y., and Vehtari, A. (2023). Efficient estimation and correction of selection-induced bias
with order statistics. preprint arXiv:2309.03742

See Also

* The FAQ page on the loo website for answers to frequently asked questions.

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html
https://arxiv.org/abs/2008.10296v3
https://arxiv.org/abs/2309.03742
https://mc-stan.org/loo/articles/online-only/faq.html

loo_model_weights 33

Examples

very artificial example, just for demonstration!

LL <- example_loglik_array()

lool <- loo(LL) # should be worst model when compared

loo2 <- loo(LL + 1) # should be second best model when compared
loo3 <- loo(LL + 2) # should be best model when compared

comp <- loo_compare(lool, loo2, loo3)
print(comp, digits = 2)

show more details with simplify=FALSE
(will be the same for all models in this artificial example)
print(comp, simplify = FALSE, digits = 3)

can use a list of objects with custom names
will use apple, banana, and cherry, as the names in the output
loo_compare(list("apple” = lool, "banana” = loo2, "cherry” = 1l003))

Not run:
works for waic (and kfold) too
loo_compare(waic(LL), waic(LL - 10))

End(Not run)

loo_model_weights Model averaging/weighting via stacking or pseudo-BMA weighting

Description

Model averaging via stacking of predictive distributions, pseudo-BMA weighting or pseudo-BMA+
weighting with the Bayesian bootstrap. See Yao et al. (2018), Vehtari, Gelman, and Gabry (2017),
and Vehtari, Simpson, Gelman, Yao, and Gabry (2024) for background.

Usage

loo_model_weights(x, ...)

Default S3 method:
loo_model_weights(
X,

method = c("stacking”, "pseudobma”),
optim_method = "BFGS",
optim_control = list(),

BB = TRUE,

BB_n = 1000,

alpha = 1,

34 loo_model_weights

r_eff_list = NULL,
cores = getOption("mc.cores”, 1)

)
stacking_weights(lpd_point, optim_method = "BFGS", optim_control = list())

pseudobma_weights(lpd_point, BB = TRUE, BB_n = 1000, alpha = 1)

Arguments

X A list of "psis_loo" objects (objects returned by loo()) or pointwise log-
likelihood matrices or , one for each model. If the list elements are named
the names will be used to label the models in the results. Each matrix/object
should have dimensions S by NN, where S is the size of the posterior sample
(with all chains merged) and N is the number of data points. If x is a list of log-
likelihood matrices then loo() is called internally on each matrix. Currently
the 1loo_model_weights() function is not implemented to be used with results
from K-fold CV, but you can still obtain weights using K-fold CV results by
calling the stacking_weights() function directly.

Unused, except for the generic to pass arguments to individual methods.

method Either "stacking” (the default) or "pseudobma”, indicating which method to
use for obtaining the weights. "stacking” refers to stacking of predictive distri-
butions and "pseudobma” refers to pseudo-BMA+ weighting (or plain pseudo-
BMA weighting if argument BB is FALSE).

optim_method If method="stacking", a string passed to the method argument of stats: :constrOptim()
to specify the optimization algorithm. The default is optim_method="BFGS",
but other options are available (see stats: :optim()).

optim_control If method="stacking", a list of control parameters for optimization passed to
the control argument of stats: :constrOptim().

BB Logical used when "method"”="pseudobma”. If TRUE (the default), the Bayesian
bootstrap will be used to adjust the pseudo-BMA weighting, which is called
pseudo-BMA+ weighting. It helps regularize the weight away from 0 and 1, so
as to reduce the variance.

BB_n For pseudo-BM A+ weighting only, the number of samples to use for the Bayesian
bootstrap. The default is BB_n=1000.

alpha Positive scalar shape parameter in the Dirichlet distribution used for the Bayesian
bootstrap. The default is alpha=1, which corresponds to a uniform distribution
on the simplex space.

r_eff_list Optionally, a list of relative effective sample size estimates for the likelihood
(exp(log_lik)) of each observation in each model. See psis() and relative_eff ()
helper function for computing r_eff. If x is a list of "psis_loo" objects then
r_eff_list is ignored.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of

loo_model_weights 35

version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

lpd_point If calling stacking_weights() or pseudobma_weights() directly, a matrix
of pointwise leave-one-out (or K-fold) log likelihoods evaluated for different
models. It should be a N by K matrix where N is sample size and K is the
number of models. Each column corresponds to one model. These values can
be calculated approximately using 1loo() or by running exact leave-one-out or
K-fold cross-validation.

Details

loo_model_weights() is a wrapper around the stacking_weights() and pseudobma_weights()
functions that implements stacking, pseudo-BMA, and pseudo-BMA+ weighting for combining
multiple predictive distributions. We can use approximate or exact leave-one-out cross-validation
(LOO-CV) or K-fold CV to estimate the expected log predictive density (ELPD).

The stacking method (method="stacking"), which is the default for loo_model_weights(), com-
bines all models by maximizing the leave-one-out predictive density of the combination distribution.
That is, it finds the optimal linear combining weights for maximizing the leave-one-out log score.

The pseudo-BMA method (method="pseudobma") finds the relative weights proportional to the
ELPD of each model. However, when method="pseudobma”, the default is to also use the Bayesian
bootstrap (BB=TRUE), which corresponds to the pseudo-BMA+ method. The Bayesian bootstrap
takes into account the uncertainty of finite data points and regularizes the weights away from the
extremes of 0 and 1.

In general, we recommend stacking for averaging predictive distributions, while pseudo-BMA+ can
serve as a computationally easier alternative.

Value

A numeric vector containing one weight for each model.

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018) Using stacking to average Bayesian
predictive distributions. Bayesian Analysis, advance publication, doi:10.1214/17-BA1091. (online).

See Also

* The loo package vignettes, particularly Bayesian Stacking and Pseudo-BMA weights using
the loo package.

https://github.com/stan-dev/loo/issues/94
https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html
https://projecteuclid.org/euclid.ba/1516093227
https://mc-stan.org/loo/articles/
https://mc-stan.org/loo/articles/loo2-weights.html
https://mc-stan.org/loo/articles/loo2-weights.html

36 loo_model_weights

¢ loo() for details on leave-one-out ELPD estimation.
* constrOptim() for the choice of optimization methods and control-parameters.

* relative_eff () for computing r_eff.

Examples

Not run:
Demonstrating usage after fitting models with RStan
library(rstan)

generate fake data from N(@,1).
N <- 100
y <= rnorm(N, @, 1)

Suppose we have three models: N(-1, sigma), N(@.5, sigma) and N(@.6,sigma).
stan_code <- "
data {
int N;
vector[N] vy;
real mu_fixed;
}
parameters {
real<lower=0> sigma;
}
model {
sigma ~ exponential(1);
y ~ normal(mu_fixed, sigma);
}
generated quantities {
vector[N] log_lik;
for (n in 1:N) log_lik[n] = normal_lpdf(y[n]| mu_fixed, sigma);
3

mod <- stan_model(model_code = stan_code)

fit1 <- sampling(mod, data=list(N=N, y=y, mu_fixed=-1))
fit2 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.5))
fit3 <- sampling(mod, data=list(N=N, y=y, mu_fixed=0.6))
model_list <- list(fit1, fit2, fit3)

log_lik_list <- lapply(model_list, extract_log_lik)

optional but recommended

r_eff_list <- lapply(model_list, function(x) {
11_array <- extract_log_lik(x, merge_chains = FALSE)
relative_eff(exp(ll_array))

»

stacking method:

wts1 <- loo_model_weights(
log_lik_list,
method = "stacking”,
r_eff_list = r_eff_list,
optim_control = list(reltol=1e-10)

loo_moment_match 37

)
print(wts1)

can also pass a list of psis_loo objects to avoid recomputing loo

loo_list <- lapply(1:length(log_lik_list), function(j) {
loo(log_lik_list[[j1], r_eff = r_eff_list[[j]1])

1)

wts2 <- loo_model_weights(

loo_list,

method = "stacking”,

optim_control = list(reltol=1e-10)
)
all.equal(wtsl1, wts2)

can provide names to be used in the results
loo_model_weights(setNames(loo_list, c("A", "B", "C")))

pseudo-BMA+ method:
set.seed(1414)
loo_model_weights(loo_list, method = "pseudobma”)

pseudo-BMA method (set BB = FALSE):
loo_model_weights(loo_list, method = "pseudobma”, BB = FALSE)

calling stacking_weights or pseudobma_weights directly

1pd1 <- loo(log_lik_list[[1]1], r_eff = r_eff_list[[1]])$pointwise[,1]
1pd2 <- loo(log_lik_list[[2]], r_eff = r_eff_list[[2]])$pointwise[,1]
1pd3 <- loo(log_lik_list[[3]], r_eff = r_eff_list[[3]1])$pointwise[,1]
stacking_weights(cbind(lpd1, 1lpd2, 1pd3))
pseudobma_weights(cbind(1lpd1, 1lpd2, 1pd3))
pseudobma_weights(cbind(lpd1, 1lpd2, 1pd3), BB = FALSE)

End(Not run)

loo_moment_match Moment matching for efficient approximate leave-one-out cross-
validation (LOO)

Description

Moment matching algorithm for updating a loo object when Pareto k estimates are large.

Usage

loo_moment_match(x, ...)

Default S3 method:

38 loo_moment_match

loo_moment_match(

X’

loo,
post_draws,
log_lik_i,

unconstrain_pars,

log_prob_upars,

log_lik_i_upars,

max_iters = 30L,

k_threshold = NULL,

split = TRUE,

cov = TRUE,

cores = getOption("mc.cores”, 1),

)
Arguments

X A fitted model object.
Further arguments passed to the custom functions documented above.

loo A loo object to be modified.

post_draws A function the takes x as the first argument and returns a matrix of posterior
draws of the model parameters.

log_lik_i A function that takes x and i and returns a matrix (one column per chain) or a

vector (all chains stacked) of log-likelihood draws of the ith observation based
on the model x. If the draws are obtained using MCMC, the matrix with MCMC
chains separated is preferred.

unconstrain_pars
A function that takes arguments x, and pars and returns posterior draws on
the unconstrained space based on the posterior draws on the constrained space
passed via pars.

log_prob_upars A function that takes arguments x and upars and returns a matrix of log-posterior
density values of the unconstrained posterior draws passed via upars.
log_lik_i_upars
A function that takes arguments X, upars, and i and returns a vector of log-
likelihood draws of the ith observation based on the unconstrained posterior
draws passed via upars.

max_iters Maximum number of moment matching iterations. Usually this does not need
to be modified. If the maximum number of iterations is reached, there will be a
warning, and increasing max_iters may improve accuracy.

k_threshold Threshold value for Pareto k values above which the moment matching algo-
rithm is used. The default value is 1 -1/ 1log10(S), where S is the sample
size.

split Logical; Indicate whether to do the split transformation or not at the end of

moment matching for each LOO fold.

loo_moment_match 39

cov Logical; Indicate whether to match the covariance matrix of the samples or not.
If FALSE, only the mean and marginal variances are matched.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option 1oo. cores is now deprecated but will be given prece-
dence over mc.cores until 1oo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

Details

The 1loo_moment_match() function is an S3 generic and we provide a default method that takes as
arguments user-specified functions post_draws, log_lik_i, unconstrain_pars, log_prob_upars,
and log_lik_i_upars. All of these functions should take as an argument in addition to those
specified for each function.

Value

The loo_moment_match() methods return an updated 1oo object. The structure of the updated 1oo
object is similar, but the method also stores the original Pareto k diagnostic values in the diagnostics
field.

Methods (by class)

e loo_moment_match(default): A default method that takes as arguments a user-specified
model object x, a Loo object and user-specified functions post_draws, log_lik_i, unconstrain_pars,
log_prob_upars, and log_lik_i_upars.

References

Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly adaptive importance
sampling. Statistics and Computing, 31, 16. doi:10.1007/s11222-020-09982-2. arXiv preprint
arXiv:1906.08850.

See Also

loo(), loo_moment_match_split()

Examples

See the vignette for loo_moment_match()

https://github.com/stan-dev/loo/issues/94

40

loo_moment_match_split

loo_moment_match_split

Split moment matching for efficient approximate leave-one-out cross-
validation (LOO)

Description

A function that computes the split moment matching importance sampling loo. Takes in the moment
matching total transformation, transforms only half of the draws, and computes a single elpd using
multiple importance sampling.

Usage

loo_moment_match_split(

X)

upars,

cov,
total_shift,

total_scaling,
total_mapping,

1,

log_prob_upars,
log_lik_i_upars,

r_eff_i,
cores,
is_method,

Arguments

X

upars

cov

total_shift

total_scaling

total_mapping

i

log_prob_upars

A fitted model object.

A matrix containing the model parameters in unconstrained space where they
can have any real value.

Logical; Indicate whether to match the covariance matrix of the samples or not.
If FALSE, only the mean and marginal variances are matched.

A vector representing the total shift made by the moment matching algorithm.

A vector representing the total scaling of marginal variance made by the moment
matching algorithm.

A vector representing the total covariance transformation made by the moment
matching algorithm.

Observation index.

A function that takes arguments x and upars and returns a matrix of log-posterior
density values of the unconstrained posterior draws passed via upars.

loo_predictive_metric 41

log_lik_i_upars
A function that takes arguments x, upars, and i and returns a vector of log-
likeliood draws of the ith observation based on the unconstrained posterior
draws passed via upars.

r_eff_i MCMC relative effective sample size of the i’th log likelihood draws.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until 1oo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

is_method The importance sampling method to use. The following methods are imple-
mented:

* "psis”: Pareto-Smoothed Importance Sampling (PSIS). Default method.

e "tis": Truncated Importance Sampling (TIS) with truncation at sqrt(S),
where S is the number of posterior draws.

e "sis": Standard Importance Sampling (SIS).

Further arguments passed to the custom functions documented above.

Value
A list containing the updated log-importance weights and log-likelihood values. Also returns the
updated MCMC effective sample size and the integrand-specific log-importance weights.
References

Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly adaptive importance
sampling. Statistics and Computing, 31, 16. doi:10.1007/s11222-020-09982-2. arXiv preprint
arXiv:1906.08850.

See Also

loo(), loo_moment_match()

loo_predictive_metric Estimate leave-one-out predictive performance..

Description

The loo_predictive_metric() function computes estimates of leave-one-out predictive metrics
given a set of predictions and observations. Currently supported metrics are mean absolute error,
mean squared error and root mean squared error for continuous predictions and accuracy and bal-
anced accuracy for binary classification. Predictions are passed on to the E_loo() function, so this
function assumes that the PSIS approximation is working well.

https://github.com/stan-dev/loo/issues/94

42 loo_predictive_metric
Usage
loo_predictive_metric(x, ...)

S3 method for class 'matrix'
loo_predictive_metric(

X ’
Y,
log_lik,
metric = c("mae"”, "rmse”, "mse", "acc”, "balanced_acc"),
r_eff =1,
cores = getOption("mc.cores"”, 1)
)
Arguments
X A numeric matrix of predictions.
Additional arguments passed on to E_loo()
y A numeric vector of observations. Length should be equal to the number of rows
in x.
log_lik A matrix of pointwise log-likelihoods. Should be of same dimension as x.
metric The type of predictive metric to be used. Currently supported options are "mae”,
"rmse" and "mse" for regression and for binary classification "acc” and "balanced_acc”.
"mae” Mean absolute error.
"mse” Mean squared error.
"rmse"” Root mean squared error, given by as the square root of MSE.
"acc"” The proportion of predictions indicating the correct outcome.
"balanced_acc” Balanced accuracy is given by the average of true positive
and true negative rates.
r_eff A Vector of relative effective sample size estimates containing one element per
observation. See psis() for more details.
cores The number of cores to use for parallelization of [psis()]. See psis() for
details.
Value

A list with the following components:

estimate Estimate of the given metric.

se Standard error of the estimate.

Examples

if (requireNamespace("rstanarm”, quietly = TRUE)) {
Use rstanarm package to quickly fit a model and get both a log-likelihood
matrix and draws from the posterior predictive distribution

loo_subsample 43

library("rstanarm”)

data from help(”1lm")
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
d <- data.frame(
weight = c(ctl, trt),
group = gl(2, 10, 20, labels = c("Ctl"”,"Trt"))
)
fit <- stan_glm(weight ~ group, data = d, refresh = @)
11 <- log_lik(fit)
r_eff <- relative_eff(exp(-11), chain_id = rep(1:4, each = 1000))

mu_pred <- posterior_epred(fit)

Leave-one-out mean absolute error of predictions

mae <- loo_predictive_metric(x = mu_pred, y = d$weight, log_lik = 11,

pred_error = 'mae', r_eff = r_eff)

Leave-one-out 90%-quantile of mean absolute error

mae_90q <- loo_predictive_metric(x = mu_pred, y = d$weight, log_lik = 11,
pred_error = 'mae', r_eff = r_eff,
type = 'quantile', probs = 0.9)

3
loo_subsample Efficient approximate leave-one-out cross-validation (LOO) using
subsampling, so that less costly and more approximate computation
is made for all LOO-fold, and more costly and accurate computations
are made only for m<N LOO-folds.
Description

Efficient approximate leave-one-out cross-validation (LOO) using subsampling, so that less costly
and more approximate computation is made for all LOO-fold, and more costly and accurate com-
putations are made only for m<N LOO-folds.

Usage

loo_subsample(x, ...)

S3 method for class '~function™'
loo_subsample(

X7

data = NULL,

draws = NULL,
observations = 400,
log_p = NULL,

log_g = NULL,

44 loo_subsample

r_eff =1,

save_psis = FALSE,

cores = getOption("mc.cores”, 1),
loo_approximation = "plpd",
loo_approximation_draws = NULL,
estimator = "diff_srs”,

llgrad = NULL,

1lhess = NULL

)
Arguments
X A function. The Methods (by class) section, below, has detailed descriptions of
how to specify the inputs.
data, draws, ... For loo_subsample.function(), these are the data, posterior draws, and other

arguments to pass to the log-likelihood function. Note that for some 1oo_approximations,
the draws will be replaced by the posteriors summary statistics to compute loo
approximations. See argument 1oo_approximation for details.

observations The subsample observations to use. The argument can take four (4) types of
arguments:

* NULL to use all observations. The algorithm then just uses standard 1oo()
or loo_approximate_posterior().

* A single integer to specify the number of observations to be subsampled.

* A vector of integers to provide the indices used to subset the data. These
observations need to be subsampled with the same scheme as given by the
estimator argument.

* A psis_loo_ss object to use the same observations that were used in a
previous call to loo_subsample().

log_p, log_g Should be supplied only if approximate posterior draws are used. The default
(NULL) indicates draws are from "true" posterior (i.e. using MCMC). If not NULL
then they should be specified as described in 1loo_approximate_posterior().

r_eff Vector of relative effective sample size estimates for the likelihood (exp(log_lik))

of each observation. This is related to the relative efficiency of estimating the
normalizing term in self-normalized importance sampling when using poste-
rior draws obtained with MCMC. If MCMC draws are used and r_eff is not
provided then the reported PSIS effective sample sizes and Monte Carlo error
estimates can be over-optimistic. If the posterior draws are (near) independent
then r_eff=1 can be used. r_eff has to be a scalar (same value is used for all
observations) or a vector with length equal to the number of observations. The
default value is 1. See the relative_eff () helper functions for help computing
r_eff.

save_psis Should the "psis” object created internally by loo_subsample() be saved in
the returned object? See 1oo() for details.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of

loo_subsample 45

version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

loo_approximation
What type of approximation of the loo_i’s should be used? The defaultis "plpd”
(the log predictive density using the posterior expectation). There are six differ-
ent methods implemented to approximate loo_i’s (see the references for more
details):

* "plpd"”: uses the Ipd based on point estimates (i.e., p(y; \é))

» "1pd”: uses the Ipds (i,e., p(y:|y))-

e "tis": uses truncated importance sampling to approximate PSIS-LOO.

* "waic": uses waic (i.e., p(¥:|y) — Pwaic)-

* "waic_grad_marginal”: uses waic approximation using first order delta
method and posterior marginal variances to approximate pyqic (ie. p(yi|é)—
p_waic_grad_marginal). Requires gradient of likelihood function.

* "waic_grad": uses waic approximation using first order delta method and
posterior covariance to approximate pqic (ie. p(yi\é)-p_waic_grad). Re-
quires gradient of likelihood function.

* "waic_hess": uses waic approximation using second order delta method
and posterior covariance to approximate p,q. (ie. p(yﬂé)—p_waic_grad).
Requires gradient and Hessian of likelihood function.

As point estimates of 0, the posterior expectations of the parameters are used.
loo_approximation_draws
The number of posterior draws used when integrating over the posterior. This is
used if loo_approximation is setto "1pd”, "waic”, or "tis".
estimator How should elpd_loo, p_loo and looic be estimated? The defaultis "diff_srs".

* "diff_srs": uses the difference estimator with simple random sampling
without replacement (srs). p_loo is estimated using standard srs. (Magnus-
son et al., 2020)

* "hh": uses the Hansen-Hurwitz estimator with sampling with replacement
proportional to size, where abs of loo_approximation is used as size. (Mag-
nusson et al., 2019)

n

* "srs": uses simple random sampling and ordinary estimation.

llgrad The gradient of the log-likelihood. This is only used when loo_approximation
is "waic_grad”, "waic_grad_marginal”, or "waic_hess". The default is
NULL.

llhess The Hessian of the log-likelihood. This is only used with 1oo_approximation

= "waic_hess". The default is NULL.

Details

The loo_subsample() function is an S3 generic and a methods is currently provided for log-
likelihood functions. The implementation works for both MCMC and for posterior approximations
where it is possible to compute the log density for the approximation.

https://github.com/stan-dev/loo/issues/94

46 loo_subsample

Value

loo_subsample() returns a named list with class c("psis_loo_ss"”, "psis_loo"”, "loo"). This
has the same structure as objects returned by 1oo() but with the additional slot:

* loo_subsampling: A list with two vectors, log_p and log_g, of the same length containing
the posterior density and the approximation density for the individual draws.

Methods (by class)

* loo_subsample(~ function™): A function f() that takes arguments data_i and draws and
returns a vector containing the log-likelihood for a single observation i evaluated at each pos-
terior draw. The function should be written such that, for each observation i in 1:N, evaluating

f(data_i = datal[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.

If using the function method then the arguments data and draws must also be specified in the
call to loo():

— data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

— draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

— The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

References

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2019). Leave-One-Out Cross-
Validation for Large Data. In Thirty-sixth International Conference on Machine Learning, PMLR
97:4244-4253.

Magnusson, M., Riis Andersen, M., Jonasson, J. and Vehtari, A. (2020). Leave-One-Out Cross-
Validation for Model Comparison in Large Data. In Proceedings of the 23rd International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), PMLR 108:341-351.

See Also

loo(), psis(), loo_compare()

nobs.psis_loo_ss 47

nobs.psis_loo_ss The number of observations in a psis_loo_ss object.

Description

The number of observations in a psis_loo_ss object.

Usage
S3 method for class 'psis_loo_ss'
nobs(object, ...)

Arguments
object apsis_loo_ss object.

Currently unused.

obs_idx Get observation indices used in subsampling

Description

Get observation indices used in subsampling

Usage

obs_idx(x, rep = TRUE)

Arguments
X A psis_loo_ss object.
rep If sampling with replacement is used, an observation can have multiple sam-
ples and these are then repeated in the returned object if rep=TRUE (e.g., a vec-
tor c(1,1,2) indicates that observation 1 has been subampled two times). If
rep=FALSE only the unique indices are returned.
Value

An integer vector.

48

pareto-k-diagnostic

pareto-k-diagnostic

Diagnostics for Pareto smoothed importance sampling (PSIS)

Description

Print a diagnostic table summarizing the estimated Pareto shape parameters and PSIS effective
sample sizes, find the indexes of observations for which the estimated Pareto shape parameter k
is larger than some threshold value, or plot observation indexes vs. diagnostic estimates. The
Details section below provides a brief overview of the diagnostics, but we recommend consulting
Vehtari, Gelman, and Gabry (2017) and Vehtari, Simpson, Gelman, Yao, and Gabry (2024) for full
details.

Usage

pareto_k_table(x)

pareto_k_ids(x, threshold = NULL)

pareto_k_values(x)

pareto_k_influence_values(x)

psis_n_eff_values(x)

mcse_loo(x, threshold = NULL)

S3 method for class 'psis_loo'
plot(

)

X’
diagnostic = c("k", "ESS", "n_eff"),

label_points = FALSE,
main = "PSIS diagnostic plot”

S3 method for class 'psis'
plot(

X,

diagnostic = c("k", "ESS", "n_eff"),
label_points = FALSE,

main = "PSIS diagnostic plot”

Arguments

X

An object created by loo() or psis().

pareto-k-diagnostic 49

threshold For pareto_k_ids(), threshold is the minimum £ value to flag (default is a
sample size S dependend threshold 1 - 1 / 1og1@(S)). For mcse_loo(), if any
k estimates are greater than threshold the MCSE estimate is returned as NA See
Details for the motivation behind these defaults.

diagnostic For the plot method, which diagnostic should be plotted? The options are "k"
for Pareto k estimates (the default), or "ESS"” or "n_eff"” for PSIS effective
sample size estimates.

label_points, ...
For the plot () method, if label_points is TRUE the observation numbers cor-
responding to any values of k greater than the diagnostic threshold will be dis-
played in the plot. Any arguments specified in . . . will be passed to graphics::text()
and can be used to control the appearance of the labels.

main For the plot() method, a title for the plot.

Details

The reliability and approximate convergence rate of the PSIS-based estimates can be assessed us-
ing the estimates for the shape parameter &k of the generalized Pareto distribution. The diagnostic
threshold for Pareto k& depends on sample size S (sample size dependent threshold was introduced
by Vehtari et al. (2024), and before that fixed thresholds of 0.5 and 0.7 were recommended). For
simplicity, loo package uses the nominal sample size S when computing the sample size specific
threshold. This provides an optimistic threshold if the effective sample size is less than 2200, but if
MCMC-ESS > S/2 the difference is usually negligible. Thinning of MCMC draws can be used to
improve the ratio ESS/S.

o If & < min(1 — 1/logl0(S),0.7), where S is the sample size, the PSIS estimate and the
corresponding Monte Carlo standard error estimate are reliable.

» If1-1/10og10(S) <= k < 0.7, the PSIS estimate and the corresponding Monte Carlo standard
error estimate are not reliable, but increasing the (effective) sample size S above 2200 may
help (this will increase the sample size specific threshold (1 — 1/10g10(2200) > 0.7 and then
the bias specific threshold 0.7 dominates).

* If 0.7 <= k < 1, the PSIS estimate and the corresponding Monte Carlo standard error have
large bias and are not reliable. Increasing the sample size may reduce the variability in &
estimate, which may result in lower &k estimate, too.

o If k > 1, the target distribution is estimated to have a non-finite mean. The PSIS estimate and
the corresponding Monte Carlo standard error are not well defined. Increasing the sample size
may reduce the variability in the £k estimate, which may also result in a lower k estimate.

What if the estimated tail shape parameter % exceeds the diagnostic threshold?: Importance
sampling is likely to work less well if the marginal posterior p(#°|y) and LOO posterior p(6°|y_;)
are very different, which is more likely to happen with a non-robust model and highly influential
observations. If the estimated tail shape parameter k£ exceeds the diagnostic threshold, the user
should be warned. (Note: If k is greater than the diagnostic threshold then WAIC is also likely
to fail, but WAIC lacks as accurate diagnostic.) When using PSIS in the context of approximate
LOO-CYV, we recommend one of the following actions:

¢ With some additional computations, it is possible to transform the MCMC draws from the
posterior distribution to obtain more reliable importance sampling estimates. This results in a

50

pareto-k-diagnostic

smaller shape parameter k. See loo_moment_match() and the vignette Avoiding model refits
in leave-one-out cross-validation with moment matching for an example of this.

* Sampling from a leave-one-out mixture distribution (see the vignette Mixture IS leave-one-
out cross-validation for high-dimensional Bayesian models), directly from p(6°|y_;) for the
problematic observations %, or using K -fold cross-validation (see the vignette Holdout vali-
dation and K-fold cross-validation of Stan programs with the loo package) will generally be
more stable.

» Using a model that is more robust to anomalous observations will generally make approxi-
mate LOO-CV more stable.

Observation influence statistics: The estimated shape parameter & for each observation can be
used as a measure of the observation’s influence on posterior distribution of the model. These can
be obtained with pareto_k_influence_values().

Effective sample size and error estimates: In the case that we obtain the samples from the pro-
posal distribution via MCMC the loo package also computes estimates for the Monte Carlo error
and the effective sample size for importance sampling, which are more accurate for PSIS than for
IS and TIS (see Vehtari et al (2024) for details). However, the PSIS effective sample size estimate
will be over-optimistic when the estimate of & is greater than min(1—1/log10(S5),0.7), where
S is the sample size.

Value

pareto_k_table() returns an object of class "pareto_k_table”, which is a matrix with columns
"Count”, "Proportion”, and "Min. n_eff", and has its own print method.

pareto_k_ids() returns an integer vector indicating which observations have Pareto k estimates
above threshold.

pareto_k_values() returns a vector of the estimated Pareto k parameters. These represent the
reliability of sampling.

pareto_k_influence_values() returns a vector of the estimated Pareto k parameters. These
represent influence of the observations on the model posterior distribution.

psis_n_eff_values() returns a vector of the estimated PSIS effective sample sizes.

mcse_loo() returns the Monte Carlo standard error (MCSE) estimate for PSIS-LOO. MCSE will
be NA if any Pareto k values are above threshold.

The plot() method is called for its side effect and does not return anything. If x is the result of a
call to 1loo() or psis() then plot(x, diagnostic) produces a plot of the estimates of the Pareto
shape parameters (diagnostic = "k") or estimates of the PSIS effective sample sizes (diagnostic
= "ESS").

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html

pointwise 51

See Also

* psis() for the implementation of the PSIS algorithm.

* The FAQ page on the loo website for answers to frequently asked questions.

pointwise Convenience function for extracting pointwise estimates

Description

Convenience function for extracting pointwise estimates

Usage

pointwise(x, estimate, ...)

S3 method for class 'loo'

pointwise(x, estimate, ...)
Arguments
X A loo object, for example one returned by 1oo(), loo_subsample(), loo_approximate_posterior(),

loo_moment_match(), etc.

estimate Which pointwise estimate to return. By default all are returned. The objects re-
turned by the different functions (loo(), loo_subsample(), etc.) have slightly
different estimates available. Typically at a minimum the estimates elpd_loo,
looic, mcse_elpd_loo, p_loo, and influence_pareto_k will be available,
but there may be others.

Currently ignored.

Value

A vector of length equal to the number of observations.

Examples

x <- loo(example_loglik_array())
pointwise(x, "elpd_loo")

https://mc-stan.org/loo/articles/online-only/faq.html

52 print.loo

print.loo Print methods

Description

Print methods

Usage

S3 method for class 'loo'
print(x, digits =1, ...)

S3 method for class 'waic'
print(x, digits =1, ...)

S3 method for class 'psis_loo'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'importance_sampling_loo'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'psis_loo_ap'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'psis'
print(x, digits = 1, plot_k = FALSE, ...)

S3 method for class 'importance_sampling'

print(x, digits = 1, plot_k = FALSE, ...)

Arguments
X An object returned by loo(), psis(), or waic().
digits An integer passed to base: :round().

Arguments passed to plot.psis_loo() if plot_k is TRUE.

plot_k Logical. If TRUE the estimates of the Pareto shape parameter k are plotted. Ig-
nored if x was generated by waic(). To just plot k without printing use the
plot() method for ’loo’ objects.

Value

X, invisibly.

See Also

pareto-k-diagnostic

psis

53

psis

Pareto smoothed importance sampling (PSIS)

Description

Implementation of Pareto smoothed importance sampling (PSIS), a method for stabilizing impor-
tance ratios. The version of PSIS implemented here corresponds to the algorithm presented in Ve-
htari, Simpson, Gelman, Yao, and Gabry (2024). For PSIS diagnostics see the pareto-k-diagnostic

page.

Usage

psis(log_ratios, ...)

S3 method for class 'array'

psis(log_ratios, ..., r_eff =1, cores

getOption("mc.cores”, 1))

S3 method for class 'matrix'

psis(log_ratios, ..., r_eff = 1, cores

getOption("mc.cores”, 1))

Default S3 method:
psis(log_ratios, ..., r_eff = 1)

is.psis(x)
is.sis(x)

is.tis(x)

Arguments

log_ratios

r_eff

An array, matrix, or vector of importance ratios on the log scale (for PSIS-LOO
these are negative log-likelihood values). See the Methods (by class) section
below for a detailed description of how to specify the inputs for each method.

Arguments passed on to the various methods.

Vector of relative effective sample size estimates containing one element per ob-
servation. The values provided should be the relative effective sample sizes of
1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency
of estimating the normalizing term in self-normalizing importance sampling. If
r_eff is not provided then the reported PSIS effective sample sizes and Monte
Carlo error estimates can be over-optimistic. If the posterior draws are (near)
independent then r_eff=1 can be used. r_eff has to be a scalar (same value
is used for all observations) or a vector with length equal to the number of ob-
servations. The default value is 1. See the relative_eff () helper function for
computing r_eff.

54 psis

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until 1oo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

X For is.psis(), an object to check.

Value

The psis() methods return an object of class "psis”, which is a named list with the following
components:

log_weights Vector or matrix of smoothed (and truncated) but unnormalized log weights. To get
normalized weights use the weights() method provided for objects of class "psis”.

diagnostics A named list containing two vectors:

¢ pareto_k: Estimates of the shape parameter k of the generalized Pareto distribution. See
the pareto-k-diagnostic page for details.
* n_eff: PSIS effective sample size estimates.

Objects of class "psis” also have the following attributes:

norm_const_log Vector of precomputed values of colLogSumExps(log_weights) that are used
internally by the weights method to normalize the log weights.

tail_len Vector of tail lengths used for fitting the generalized Pareto distribution.

r_eff If specified, the user’s r_eff argument.

dims Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method Method used for importance sampling, here psis.

Methods (by class)
* psis(array): An I by C' by N array, where I is the number of MCMC iterations per chain,
C' is the number of chains, and N is the number of data points.

e psis(matrix): An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and NV is the number of data points.

* psis(default): A vector of length .S (posterior sample size).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

https://github.com/stan-dev/loo/issues/94
https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html

psislw 55

See Also

* loo() for approximate LOO-CV using PSIS.
* pareto-k-diagnostic for PSIS diagnostics.
* The loo package vignettes for demonstrations.

» The FAQ page on the loo website for answers to frequently asked questions.

Examples

log_ratios <- -1 * example_loglik_array()
r_eff <- relative_eff(exp(-log_ratios))
psis_result <- psis(log_ratios, r_eff = r_eff)
str(psis_result)

plot(psis_result)

extract smoothed weights
1w <- weights(psis_result) # default args are log=TRUE, normalize=TRUE
ulw <- weights(psis_result, normalize=FALSE) # unnormalized log-weights

w <- weights(psis_result, log=FALSE) # normalized weights (not log-weights)
uw <- weights(psis_result, log=FALSE, normalize = FALSE) # unnormalized weights

psislw Pareto smoothed importance sampling (deprecated, old version)

Description

As of version 2.0.0 this function is deprecated. Please use the psis() function for the new PSIS
algorithm.

Usage

psislw(
1w,
wcp = 0.2,
wtrunc = 3/4,
cores = getOption("mc.cores”, 1),
11fun = NULL,
llargs = NULL,

https://mc-stan.org/loo/articles/index.html
https://mc-stan.org/loo/articles/online-only/faq.html

56

Arguments

1w

wep

wtrunc

cores

11fun, llargs

Value

relative_eff

A matrix or vector of log weights. For computing LOO, 1w = -log_lik, the
negative of an S (simulations) by N (data points) pointwise log-likelihood ma-
trix.

The proportion of importance weights to use for the generalized Pareto fit. The
100*wcp\ from which to estimate the parameters of the generalized Pareto dis-
tribution.

For truncating very large weights to S”wtrunc. Set to zero for no truncation.

The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER), the old option 1oo.cores is now deprecated but will be given prece-
dence over mc.cores until it is removed. As of version 2.0.0, the default is
now 1 core if mc.cores is not set, but we recommend using as many (or
close to as many) cores as possible.

See loo. function().

Ignored when psislw() is called directly. The ... is only used internally when
psislw() is called by the 1oo() function.

A named list with components 1w_smooth (modified log weights) and pareto_k (estimated gener-
alized Pareto shape parameter(s) k).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

See Also

pareto-k-diagnostic for PSIS diagnostics.

relative_eff

Convenience function for computing relative efficiencies

Description

relative_eff () computes the the MCMC effective sample size divided by the total sample size.

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html

relative_eff

Usage

relative_eff(x,

57

L)

Default S3 method:
relative_eff(x, chain_id, ...)

S3 method for class 'matrix'
relative_eff(x, chain_id, ..., cores = getOption("mc.cores”, 1))

S3 method for class 'array'

relative_eff(x,

., cores = getOption("mc.cores”, 1))

S3 method for class '~ function™'

relative_eff(
X)
chain_id,

L

cores = getOption("mc.cores”, 1),

data = NULL,
draws = NULL

)

S3 method for class 'importance_sampling'

relative_eff(x,

Arguments

X

chain_id

cores
data, draws, ...

Value

L)

A vector, matrix, 3-D array, or function. See the Methods (by class) section be-
low for details on specifying x, but where "log-likelihood" is mentioned replace
it with one of the following depending on the use case:

* For use with the 1loo() function, the values in x (or generated by x, if a
function) should be likelihood values (i.e., exp(log_lik)), not on the log
scale.

* For generic use with psis(), the values in x should be the reciprocal of the
importance ratios (i.e., exp(-log_ratios)).

A vector of length NROW(x) containing MCMC chain indexes for each each row
of x (if a matrix) or each value in x (if a vector). No chain_id is needed if x is
a 3-D array. If there are C chains then valid chain indexes are values in 1:C.
The number of cores to use for parallelization.

Same as for the 1oo() function method.

A vector of relative effective sample sizes.

Methods (by class)

* relative_eff(default): A vector of length S (posterior sample size).

58

sis

* relative_eff(matrix): An S by IV matrix, where S is the size of the posterior sample (with

all chains merged) and N is the number of data points.

relative_eff(array): An I by C by N array, where [is the number of MCMC iterations
per chain, C is the number of chains, and N is the number of data points.

relative_eff (" function™): A function f() that takes arguments data_i and draws and
returns a vector containing the log-likelihood for a single observation i evaluated at each pos-
terior draw. The function should be written such that, for each observation i in 1:N, evaluating

f(data_i = datal[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.

If using the function method then the arguments data and draws must also be specified in the
call to 1oo():

— data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

— draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

— The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

* relative_eff(importance_sampling): If x is an object of class "psis”, relative_eff ()

simply returns the r_eff attribute of x.

Examples

LLarr <- example_loglik_array()
LLmat <- example_loglik_matrix()
dim(LLarr)

dim(LLmat)

rel_n_eff_1 <- relative_eff(exp(LLarr))
rel_n_eff_2 <- relative_eff(exp(LLmat), chain_id = rep(1:2, each = 500))
all.equal(rel_n_eff_1, rel_n_eff_2)

Standard importance sampling (SIS)

Description

Implementation of standard importance sampling (SIS).

sis

Usage

sis(log_ratios,

59

>

S3 method for class 'array'

sis(log_ratios,

., r_eff = NULL, cores = getOption("mc.cores”, 1))

S3 method for class 'matrix'

sis(log_ratios,

., r_eff = NULL, cores = getOption("mc.cores”, 1))

Default S3 method:

sis(log_ratios,

Arguments

log_ratios

r_eff

cores

Value

., r_eff = NULL)

An array, matrix, or vector of importance ratios on the log scale (for Importance
sampling LOO, these are negative log-likelihood values). See the Methods (by
class) section below for a detailed description of how to specify the inputs for
each method.

Arguments passed on to the various methods.

Vector of relative effective sample size estimates containing one element per
observation. The values provided should be the relative effective sample sizes of
1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency of
estimating the normalizing term in self-normalizing importance sampling. See
the relative_eff () helper function for computing r_eff. If using psis with
draws of the log_ratios not obtained from MCMC then the warning message
thrown when not specifying r_eff can be disabled by setting r_eff to NA.

The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until 1oo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

The sis() methods return an object of class "sis"”, which is a named list with the following com-

ponents:

log_weights Vector or matrix of smoothed but unnormalized log weights. To get normalized
weights use the weights() method provided for objects of class sis.

diagnostics A named list containing one vector:

e pareto_k: Not used in sis, all set to 0.

* n_eff: effective sample size estimates.

https://github.com/stan-dev/loo/issues/94

60

sis

Objects of class "sis” also have the following attributes:

norm_const_log Vector of precomputed values of colLogSumExps(log_weights) that are used
internally by the weights method to normalize the log weights.

r_eff If specified, the user’s r_eff argument.

tail_len Not used for sis.

dims Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method Method used for importance sampling, here sis.

Methods (by class)

* sis(array): An I by C by N array, where I is the number of MCMC iterations per chain, C'
is the number of chains, and [V is the number of data points.

* sis(matrix): An S by N matrix, where S is the size of the posterior sample (with all chains
merged) and NV is the number of data points.

* sis(default): A vector of length S (posterior sample size).

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

See Also

* psis() for approximate LOO-CV using PSIS.
* loo() for approximate LOO-CV.

* pareto-k-diagnostic for PSIS diagnostics.

Examples

log_ratios <- -1 * example_loglik_array()
r_eff <- relative_eff(exp(-log_ratios))
sis_result <- sis(log_ratios, r_eff = r_eff)
str(sis_result)

extract smoothed weights
1w <- weights(sis_result) # default args are log=TRUE, normalize=TRUE
ulw <- weights(sis_result, normalize=FALSE) # unnormalized log-weights

w <- weights(sis_result, log=FALSE) # normalized weights (not log-weights)
uw <- weights(sis_result, log=FALSE, normalize = FALSE) # unnormalized weights

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html

tis

61

tis

Truncated importance sampling (TIS)

Description

Implementation of truncated (self-normalized) importance sampling (TIS), truncated at S(1/2) as
recommended by Ionides (2008).

Usage

tis(log_ratios,

)

S3 method for class 'array'

tis(log_ratios,

., r_eff =1, cores = getOption("mc.cores”, 1))

S3 method for class 'matrix'

tis(log_ratios,

., r_eff =1, cores = getOption("mc.cores”, 1))

Default S3 method:

tis(log_ratios,

Arguments

log_ratios

r_eff

cores

., r_eff = 1)

An array, matrix, or vector of importance ratios on the log scale (for Importance
sampling LOO, these are negative log-likelihood values). See the Methods (by
class) section below for a detailed description of how to specify the inputs for
each method.

Arguments passed on to the various methods.

Vector of relative effective sample size estimates containing one element per ob-
servation. The values provided should be the relative effective sample sizes of
1/exp(log_ratios) (i.e., 1/ratios). This is related to the relative efficiency
of estimating the normalizing term in self-normalizing importance sampling. If
r_eff is not provided then the reported (T)IS effective sample sizes and Monte
Carlo error estimates can be over-optimistic. If the posterior draws are (near)
independent then r_eff=1 can be used. r_eff has to be a scalar (same value
is used for all observations) or a vector with length equal to the number of ob-
servations. The default value is 1. See the relative_eff () helper function for
computing r_eff.
The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.
* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

https://github.com/stan-dev/loo/issues/94

62 tis

Value

The tis() methods return an object of class "tis", which is a named list with the following com-
ponents:

log_weights Vector or matrix of smoothed (and truncated) but unnormalized log weights. To get
normalized weights use the weights() method provided for objects of class tis.

diagnostics A named list containing one vector:

e pareto_k: Not used in tis, all set to 0.
* n_eff: Effective sample size estimates.

Objects of class "tis" also have the following attributes:

norm_const_log Vector of precomputed values of colLogSumExps(log_weights) that are used
internally by the weights()method to normalize the log weights.

r_eff If specified, the user’s r_eff argument.

tail_len Not used for tis.

dims Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method Method used for importance sampling, here tis.

Methods (by class)

e tis(array): An I by C by N array, where [is the number of MCMC iterations per chain, C
is the number of chains, and N is the number of data points.

e tis(matrix): An S by N matrix, where .S is the size of the posterior sample (with all chains
merged) and NV is the number of data points.

* tis(default): A vector of length .S (posterior sample size).

References

Tonides, Edward L. (2008). Truncated importance sampling. Journal of Computational and Graph-
ical Statistics 17(2): 295-311.

See Also

e psis() for approximate LOO-CV using PSIS.
* loo() for approximate LOO-CV.
* pareto-k-diagnostic for PSIS diagnostics.

Examples

log_ratios <- -1 * example_loglik_array()
r_eff <- relative_eff(exp(-log_ratios))
tis_result <- tis(log_ratios, r_eff = r_eff)
str(tis_result)

extract smoothed weights
1w <- weights(tis_result) # default args are log=TRUE, normalize=TRUE

update.psis_loo_ss

ulw <- weights(tis_result, normalize=FALSE) # unnormalized log-weights

w <- weights(tis_result, log=FALSE) # normalized weights (not log-weights)
uw <- weights(tis_result, log=FALSE, normalize = FALSE) # unnormalized weights

63

update.psis_loo_ss Update psis_loo_ss objects

Description

Update psis_loo_ss objects

Usage
S3 method for class 'psis_loo_ss'
update(
object,
data = NULL,
draws = NULL,
observations = NULL,
r_eff =1,

cores = getOption("mc.cores”, 1),
loo_approximation = NULL,
loo_approximation_draws = NULL,
llgrad = NULL,

1lhess = NULL

)
Arguments
object A psis_loo_ss object to update.
Currently not used.
data, draws See 1loo_subsample. function().

observations The subsample observations to use. The argument can take four (4) types of

arguments:

* NULL to use all observations. The algorithm then just uses standard 1oo()

or loo_approximate_posterior().

* A single integer to specify the number of observations to be subsampled.

* A vector of integers to provide the indices used to subset the data. These
observations need to be subsampled with the same scheme as given by the

estimator argument.

* A psis_loo_ss object to use the same observations that were used in a

previous call to 1loo_subsample().

update.psis_loo_ss

r_eff Vector of relative effective sample size estimates for the likelihood (exp(log_lik))

of each observation. This is related to the relative efficiency of estimating the
normalizing term in self-normalized importance sampling when using poste-
rior draws obtained with MCMC. If MCMC draws are used and r_eff is not
provided then the reported PSIS effective sample sizes and Monte Carlo error
estimates can be over-optimistic. If the posterior draws are (near) independent
then r_eff=1 can be used. r_eff has to be a scalar (same value is used for all
observations) or a vector with length equal to the number of observations. The
default value is 1. See the relative_eff () helper functions for help computing
r_eff.

cores The number of cores to use for parallelization. This defaults to the option
mc.cores which can be set for an entire R session by options(mc.cores =
NUMBER). The old option loo. cores is now deprecated but will be given prece-
dence over mc.cores until loo.cores is removed in a future release. As of
version 2.0.0 the default is now 1 core if mc. cores is not set, but we recom-
mend using as many (or close to as many) cores as possible.

* Note for Windows 10 users: it is strongly recommended to avoid using
the .Rprofile file to set mc.cores (using the cores argument or setting
mc. cores interactively or in a script is fine).

loo_approximation
What type of approximation of the loo_i’s should be used? The defaultis "plpd”
(the log predictive density using the posterior expectation). There are six differ-
ent methods implemented to approximate loo_i’s (see the references for more
details):

* "plpd": uses the lpd based on point estimates (i.e., p(y; \é))

» "1pd": uses the Ipds (i,e., p(y:|y))-

* "tis": uses truncated importance sampling to approximate PSIS-LOO.

* "waic”: uses waic (i.e., p(¥:|y) — Pwaic)-

* "waic_grad_marginal”: uses waic approximation using first order delta
method and posterior marginal variances to approximate py,qic (ie. p(yi|é)—
p_waic_grad_marginal). Requires gradient of likelihood function.

* "waic_grad”: uses waic approximation using first order delta method and
posterior covariance to approximate pyqic (ie. p(y;|6)-p_waic_grad). Re-
quires gradient of likelihood function.

* "waic_hess": uses waic approximation using second order delta method
and posterior covariance to approximate pyaic (ie. p(y:|0)-p_waic_grad).
Requires gradient and Hessian of likelihood function.

As point estimates of 0, the posterior expectations of the parameters are used.
loo_approximation_draws

The number of posterior draws used when integrating over the posterior. This is

used if 1oo_approximation is setto "1pd”, "waic”, or "tis".

llgrad The gradient of the log-likelihood. This is only used when loo_approximation
is "waic_grad”, "waic_grad_marginal”, or "waic_hess”. The default is
NULL.

1lhess The Hessian of the log-likelihood. This is only used with 1oo_approximation

= "waic_hess". The default is NULL.

https://github.com/stan-dev/loo/issues/94

waic 65

Details

If observations is updated then if a vector of indices or a psis_loo_ss object is supplied the
updated object will have exactly the observations indicated by the vector or psis_loo_ss object. If
a single integer is supplied, new observations will be sampled to reach the supplied sample size.

Value

A psis_loo_ss object.

waic Widely applicable information criterion (WAIC)

Description

The waic() methods can be used to compute WAIC from the pointwise log-likelihood. However,
we recommend LOO-CV using PSIS (as implemented by the 1oo() function) because PSIS pro-
vides useful diagnostics as well as effective sample size and Monte Carlo estimates.

Usage

waic(x, ...)

S3 method for class 'array'
waic(x, ...)

S3 method for class 'matrix'
waic(x, ...)

S3 method for class '~ function™'

waic(x, ..., data = NULL, draws = NULL)
is.waic(x)
Arguments
X A log-likelihood array, matrix, or function. The Methods (by class) section,

below, has detailed descriptions of how to specify the inputs for each method.

draws, data, ... For the function method only. See the Methods (by class) section below for
details on these arguments.

Value

A named list (of class c("waic”, "loo")) with components:

n on

estimates A matrix with two columns ("Estimate”, "SE") and three rows ("elpd_waic", "p_waic”,
"waic"). This contains point estimates and standard errors of the expected log pointwise pre-
dictive density (elpd_waic), the effective number of parameters (p_waic) and the information
criterion waic (which is just -2 * elpd_waic, i.e., converted to deviance scale).

66 waic

pointwise A matrix with three columns (and number of rows equal to the number of observations)
containing the pointwise contributions of each of the above measures (elpd_waic, p_waic,
waic).

Methods (by class)

* waic(array): An I by C' by N array, where I is the number of MCMC iterations per chain,
C' is the number of chains, and N is the number of data points.

* waic(matrix): An .S by N matrix, where S is the size of the posterior sample (with all chains
merged) and NV is the number of data points.

e waic(function™): A function f() that takes arguments data_i and draws and returns a
vector containing the log-likelihood for a single observation i evaluated at each posterior
draw. The function should be written such that, for each observation i in 1:N, evaluating

f(data_i = data[i,, drop=FALSE], draws = draws)

results in a vector of length S (size of posterior sample). The log-likelihood function can also
have additional arguments but data_i and draws are required.

If using the function method then the arguments data and draws must also be specified in the
call to loo():

— data: A data frame or matrix containing the data (e.g. observed outcome and predictors)
needed to compute the pointwise log-likelihood. For each observation i, the ith row of
data will be passed to the data_i argument of the log-likelihood function.

— draws: An object containing the posterior draws for any parameters needed to compute
the pointwise log-likelihood. Unlike data, which is indexed by observation, for each
observation the entire object draws will be passed to the draws argument of the log-
likelihood function.

— The ... can be used if your log-likelihood function takes additional arguments. These
arguments are used like the draws argument in that they are recycled for each observation.

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely application
information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571-
3594.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing. 27(5), 1413-1432. doi:10.1007/s11222-
016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance
sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

See Also

* The loo package vignettes and Vehtari, Gelman, and Gabry (2017) and Vehtari, Simpson,
Gelman, Yao, and Gabry (2024) for more details on why we prefer 1oo() towaic().

* loo_compare() for comparing models on approximate LOO-CV or WAIC.

https://link.springer.com/article/10.1007/s11222-016-9696-4
https://arxiv.org/abs/1507.04544
https://jmlr.org/papers/v25/19-556.html
https://mc-stan.org/loo/articles/

weights.importance_sampling 67

Examples

Array and matrix methods
LLarr <- example_loglik_array()
dim(LLarr)

LLmat <- example_loglik_matrix()
dim(LLmat)

waic_arr <- waic(LLarr)
waic_mat <- waic(LLmat)
identical(waic_arr, waic_mat)

Not run:

log_lik1l <- extract_log_lik(stanfitl)
log_lik2 <- extract_log_lik(stanfit2)
(waicl <- waic(log_lik1))

(waic2 <- waic(log_lik2))
print(compare(waicl, waic2), digits = 2)

End(Not run)

weights.importance_sampling
Extract importance sampling weights

Description

Extract importance sampling weights

Usage
S3 method for class 'importance_sampling'
weights(object, ..., log = TRUE, normalize = TRUE)
Arguments
object An object returned by psis(), tis(), or sis().
Ignored.
log Should the weights be returned on the log scale? Defaults to TRUE.
normalize Should the weights be normalized? Defaults to TRUE.
Value

The weights () method returns an object with the same dimensions as the 1log_weights component
of object. The normalize and log arguments control whether the returned weights are normalized
and whether or not to return them on the log scale.

68 weights.importance_sampling

Examples

See the examples at help(”"psis")

Index

ap_psis, 5
attributes, 54, 60, 62

base: :round(), 52

compare, 6
constrOoptim(), 36
crps, 7

E_loo, 12

E_loo(), 8, 21,41, 42

ELPD, 31, 32

elpd, 10

elpd_diff, 32

elpd_loo, 21, 32

example_loglik_array, 11

example_loglik_matrix
(example_loglik_array), 11

extract_log_lik, 11

factor, 18

gpdfit, 15
graphics::text(), 49

importance_sampling, 16
is.kfold (kfold-generic), 17
is.loo (loo), 19
is.psis(psis), 53
is.psis_loo (loo), 19

is.sis (psis), 53

is.tis (psis), 53

is.waic (waic), 65

kfold (kfold-generic), 17

kfold-generic, 17

kfold-helpers, 18

kfold_split_grouped (kfold-helpers), 18

kfold_split_random (kfold-helpers), 18

kfold_split_stratified (kfold-helpers),
18

Kline (loo-datasets), 25

loo, 19
loo(), 3, 6,29-31, 34-36, 39, 41, 44, 46, 48,
50-52, 55-57, 60, 62, 65
loo-datasets, 25
loo-glossary, 26
loo-package, 3
loo.function(), 56
loo_approximate_posterior, 28
loo_approximate_posterior(), 44, 51
loo_compare, 31
loo_compare(), 6, 17, 18, 23, 31, 46, 66
loo_crps (crps), 7
loo_i (1loo0), 19
loo_model_weights, 33
loo_model_weights(), 3
loo_moment_match, 37
loo_moment_match(), 41, 50, 51
loo_moment_match_split, 40
loo_moment_match_split(), 39
loo_predictive_metric, 41
loo_scrps (crps), 7
loo_subsample, 43
loo_subsample(), 51
loo_subsample. function(), 63

mcse_elpd_loo, 21
mcse_loo (pareto-k-diagnostic), 48
milk (loo-datasets), 25

nobs.psis_loo_ss, 47
obs_idx, 47

p_loo, 21

Pareto k, 12, 13

pareto-k-diagnostic, 15, 22, 23, 48, 52-56,
60, 62

pareto_k_ids (pareto-k-diagnostic), 48

70

pareto_k_influence_values
(pareto-k-diagnostic), 48

pareto_k_table (pareto-k-diagnostic), 48

pareto_k_values (pareto-k-diagnostic),
48

plot(), 52

plot.loo (pareto-k-diagnostic), 48

plot.psis (pareto-k-diagnostic), 48

plot.psis_loo (pareto-k-diagnostic), 48

plot.psis_loo(), 52

pointwise, 51

print.compare.loo (loo_compare), 31

print.compare.loo_ss (loo_compare), 31

print.importance_sampling (print.loo),
52

print.importance_sampling_loo
(print.loo), 52

print.loo, 52

print.psis (print.loo), 52

print.psis_loo (print.loo), 52

print.psis_loo_ap (print.loo), 52

print.waic (print.loo), 52

pseudobma_weights (loo_model_weights),
33

PSIS, 12, 19

psis, 53

psis(), 3,9, 13, 15, 20, 22, 23, 31, 34,42, 46,
48, 50-52, 55, 57, 60, 62, 67

psis_n_eff_values
(pareto-k-diagnostic), 48

psislw, 55

relative_eff, 56
relative_eff(), 17, 20, 34, 36, 44, 53, 59,
61, 64

scrps (crps), 7

se_diff, 32

sis, 58

sis(), 67

stacking_weights (loo_model_weights), 33
stats::constrOptim(), 34
stats::optim(), 34

tis, 61
tis(), 67

update.psis_loo_ss, 63

voice (loo-datasets), 25

voice_loo (loo-datasets), 25

waic, 65

waic(), 6, 52

weights(), 54, 59, 62
weights.importance_sampling, 67

INDEX

	loo-package
	ap_psis
	compare
	crps
	elpd
	example_loglik_array
	extract_log_lik
	E_loo
	gpdfit
	importance_sampling
	kfold-generic
	kfold-helpers
	loo
	loo-datasets
	loo-glossary
	loo_approximate_posterior
	loo_compare
	loo_model_weights
	loo_moment_match
	loo_moment_match_split
	loo_predictive_metric
	loo_subsample
	nobs.psis_loo_ss
	obs_idx
	pareto-k-diagnostic
	pointwise
	print.loo
	psis
	psislw
	relative_eff
	sis
	tis
	update.psis_loo_ss
	waic
	weights.importance_sampling
	Index

