
Package: wk (via r-universe)
January 16, 2026

Title Lightweight Well-Known Geometry Parsing

Version 0.9.4

Maintainer Dewey Dunnington <dewey@fishandwhistle.net>

Description Provides a minimal R and C++ API for parsing well-known
binary and well-known text representation of geometries to and
from R-native formats. Well-known binary is compact and fast to
parse; well-known text is human-readable and is useful for
writing tests. These formats are useful in R only if the
information they contain can be accessed in R, for which
high-performance functions are provided here.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0), vctrs (>= 0.3.0), sf, tibble, readr

URL https://paleolimbot.github.io/wk/,

https://github.com/paleolimbot/wk

BugReports https://github.com/paleolimbot/wk/issues

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

Repository https://r-multiverse-staging.r-universe.dev

Date/Publication 2024-10-11 15:24:46 UTC

RemoteUrl https://github.com/paleolimbot/wk

RemoteRef v0.9.4

RemoteSha 03d0d38b68a67166faa1cbd774698c3e033b514c

1

https://paleolimbot.github.io/wk/
https://github.com/paleolimbot/wk
https://github.com/paleolimbot/wk/issues

2 Contents

Contents
crc . 3
crc_x . 4
grd . 5
grd_cell . 7
grd_extract . 8
grd_snap_next . 9
grd_subset . 9
grd_summary . 11
grd_tile . 11
grd_tile_template . 12
handle_wkt_without_vector_size . 13
new_wk_crc . 14
new_wk_grd . 14
new_wk_rct . 15
new_wk_wkb . 15
new_wk_wkt . 16
new_wk_xy . 16
plot.wk_grd_xy . 17
rct . 18
rct_xmin . 19
vctrs-methods . 20
wkb . 21
wkb_to_hex . 22
wkb_translate_wkt . 23
wkt . 23
wk_bbox . 24
wk_chunk_strategy_single . 25
wk_count . 26
wk_crs . 27
wk_crs_equal . 28
wk_crs_inherit . 28
wk_crs_proj_definition . 29
wk_debug . 30
wk_example . 31
wk_flatten . 32
wk_format . 33
wk_handle.data.frame . 34
wk_handle.wk_crc . 35
wk_handle.wk_grd_xy . 36
wk_handle_slice.data.frame . 37
wk_identity . 38
wk_is_geodesic . 39
wk_linestring . 40
wk_meta . 41
wk_orient . 42
wk_plot . 43

crc 3

wk_problems . 45
wk_proj_crs_view . 46
wk_set_z . 46
wk_transform . 47
wk_translate.sfc . 48
wk_trans_affine . 48
wk_trans_explicit . 49
wk_trans_inverse . 50
wk_vertices . 50
wk_void . 51
wk_writer.sfc . 52
xy . 53
xy_x . 55

Index 56

crc 2D Circle Vectors

Description

2D Circle Vectors

Usage

crc(x = double(), y = double(), r = double(), crs = wk_crs_auto())

as_crc(x, ...)

S3 method for class 'wk_crc'
as_crc(x, ...)

S3 method for class 'matrix'
as_crc(x, ..., crs = NULL)

S3 method for class 'data.frame'
as_crc(x, ..., crs = NULL)

Arguments

x, y Coordinates of the center

r Circle radius

crs A value to be propagated as the CRS for this vector.

... Extra arguments passed to as_crc().

Value

A vector along the recycled length of bounds.

4 crc_x

Examples

crc(1, 2, 3)

crc_x Circle accessors

Description

Circle accessors

Usage

crc_x(x)

crc_y(x)

crc_center(x)

crc_r(x)

Arguments

x A crc() vector

Value

Components of the crc() vector

Examples

x <- crc(1, 2, r = 3)
crc_x(x)
crc_y(x)
crc_r(x)
crc_center(x)

grd 5

grd Raster-like objects

Description

grd() objects are just an array (any object with more than two dim()s) and a bounding box (a
rct(), which may or may not have a wk_crs() attached). The ordering of the dimensions is y
(indices increasing downwards), x (indices increasing to the right). This follows the ordering of
as.raster()/rasterImage() and aligns with the printing of matrices.

Usage

grd(
bbox = NULL,
nx = NULL,
ny = NULL,
dx = NULL,
dy = NULL,
type = c("polygons", "corners", "centers")

)

grd_rct(data, bbox = rct(0, 0, dim(data)[2], dim(data)[1]))

grd_xy(data, bbox = rct(0, 0, dim(data)[2] - 1, dim(data)[1] - 1))

as_grd_rct(x, ...)

S3 method for class 'wk_grd_rct'
as_grd_rct(x, ...)

S3 method for class 'wk_grd_xy'
as_grd_rct(x, ...)

as_grd_xy(x, ...)

S3 method for class 'wk_grd_xy'
as_grd_xy(x, ...)

S3 method for class 'wk_grd_rct'
as_grd_xy(x, ...)

Arguments

bbox A rct() containing the bounds and CRS of the object. You can specify a rct()
with xmin > xmax or ymin > ymax which will flip the underlying data and return
an object with a normalized bounding box and data.

6 grd

nx, ny, dx, dy Either a number of cells in the x- and y- directions or delta in the x- and y-
directions (in which case bbox must be specified).

type Use "polygons" to return a grid whose objects can be represented using an
rct(); use "centers" to return a grid whose objects are the center of the rct()
grid; use "corners" to return a grid along the corners of bbox.

data An object with two or more dimensions. Most usefully, a matrix.

x An object to convert to a grid

... Passed to S3 methods

Value

• grd() returns a grd_rct() for type == "polygons or a grd_xy() otherwise.

• grd_rct() returns an object of class "wk_grd_rct".

• grd_xy() returns an object of class "wk_grd_xy".

Examples

create a grid with no data (just for coordinates)
(grid <- grd(nx = 2, ny = 2))
as_rct(grid)
as_xy(grid)
plot(grid, border = "black")

more usefully, wraps a matrix or nd array + bbox
approx volcano in New Zealand Transverse Mercator
bbox <- rct(

5917000, 1757000 + 870,
5917000 + 610, 1757000,
crs = "EPSG:2193"

)
(grid <- grd_rct(volcano, bbox))

these come with a reasonable default plot method for matrix data
plot(grid)

you can set the data or the bounding box after creation
grid$bbox <- rct(0, 0, 1, 1)

subset by indices or rct
plot(grid[1:2, 1:2])
plot(grid[c(start = NA, stop = NA, step = 2), c(start = NA, stop = NA, step = 2)])
plot(grid[rct(0, 0, 0.5, 0.5)])

grd_cell 7

grd_cell Grid cell operators

Description

Grid cell operators

Usage

grd_cell(grid, point, ..., snap = grd_snap_next)

grd_cell_range(
grid,
bbox = wk_bbox(grid),
...,
step = 1L,
snap = grd_snap_next

)

grd_cell_rct(grid, i, j = NULL, ...)

S3 method for class 'wk_grd_rct'
grd_cell_rct(grid, i, j = NULL, ..., out_of_bounds = "keep")

S3 method for class 'wk_grd_xy'
grd_cell_rct(grid, i, j = NULL, ..., out_of_bounds = "keep")

grd_cell_xy(grid, i, j = NULL, ...)

S3 method for class 'wk_grd_rct'
grd_cell_xy(grid, i, j = NULL, ..., out_of_bounds = "keep")

S3 method for class 'wk_grd_xy'
grd_cell_xy(grid, i, j = NULL, ..., out_of_bounds = "keep")

Arguments

grid A grd_xy(), grd_rct(), or other object implementing grd_*() methods.

point A handleable of points.

... Unused

snap A function that transforms real-valued indices to integer indices (e.g., floor(),
ceiling(), or round()). For grd_cell_range(), a list() with exactly two
elements to be called for the minimum and maximum index values, respectively.

bbox An rct() object.

step The difference between adjascent indices in the output

8 grd_extract

i, j 1-based index values. i indices correspond to decreasing y values; j indices cor-
respond to increasing x values. Values outside the range 1:nrow|ncol(data)
will be censored to NA including 0 and negative values.

out_of_bounds One of ’keep’, ’censor’, ’discard’, or ’squish’

Value

• grd_cell(): returns a list(i, j) of index values corresponding to the input points and ad-
justed according to snap. Index values will be outside dim(grid) for points outside wk_bbox(grid)
including negative values.

• grd_cell_range() returns a slice describing the range of indices in the i and j directions.

• grd_cell_rct() returns a rct() of the cell extent at i, j.

• grd_cell_xy() returns a xy() of the cell center at i, j.

Examples

grid <- grd(nx = 3, ny = 2)
grd_cell(grid, xy(0.5, 0.5))
grd_cell_range(grid, grid$bbox)
grd_cell_rct(grid, 1, 1)
grd_cell_xy(grid, 1, 1)

grd_extract Extract values from a grid

Description

Unlike grd_subset(), which subsets like a matrix, grd_extract() returns values.

Usage

grd_extract(grid, i = NULL, j = NULL)

grd_extract_nearest(grid, point, out_of_bounds = c("censor", "squish"))

grd_data_extract(grid_data, i = NULL, j = NULL)

Arguments

grid A grd_xy(), grd_rct(), or other object implementing grd_*() methods.

i, j Index values as in grd_subset() except recycled to a common size.

point A handleable of points.

out_of_bounds One of ’keep’, ’censor’, ’discard’, or ’squish’

grid_data The data member of a grd(). This is typically an array but can also be an S3
object with an array-like subset method. The native raster is special-cased as its
subset method requires non-standard handling.

grd_snap_next 9

Value

A matrix or vector with two fewer dimensions than the input.

grd_snap_next Index snap functions

Description

These functions can be used in grd_cell() and grd_cell_range(). These functions differ in
the way they round 0.5: grd_snap_next() always rounds up and grd_snap_previous() always
rounds down. You can also use floor() and ceiling() as index snap functions.

Usage

grd_snap_next(x)

grd_snap_previous(x)

Arguments

x A vector of rescaled but non-integer indices

Value

A vector of integer indices

Examples

grd_snap_next(seq(0, 2, 0.25))
grd_snap_previous(seq(0, 2, 0.25))

grd_subset Subset grid objects

Description

The grd_subset() method handles the subsetting of a grd() in x-y space. Ordering of indices is
not considered and logical indies are recycled silently along dimensions. The result of a grd_subset()
is always a grd() of the same type whose relationship to x-y space has not changed.

10 grd_subset

Usage

grd_subset(grid, i = NULL, j = NULL, ...)

grd_crop(grid, bbox, ..., step = 1L, snap = NULL)

grd_extend(grid, bbox, ..., step = 1L, snap = NULL)

S3 method for class 'wk_grd_rct'
grd_crop(grid, bbox, ..., step = 1L, snap = NULL)

S3 method for class 'wk_grd_xy'
grd_crop(grid, bbox, ..., step = 1L, snap = NULL)

S3 method for class 'wk_grd_rct'
grd_extend(grid, bbox, ..., step = 1L, snap = NULL)

S3 method for class 'wk_grd_xy'
grd_extend(grid, bbox, ..., step = 1L, snap = NULL)

grd_data_subset(grid_data, i = NULL, j = NULL)

Arguments

grid A grd_xy(), grd_rct(), or other object implementing grd_*() methods.
i, j 1-based index values. i indices correspond to decreasing y values; j indices cor-

respond to increasing x values. Values outside the range 1:nrow|ncol(data)
will be censored to NA including 0 and negative values.

... Passed to subset methods
bbox An rct() object.
step The difference between adjascent indices in the output
snap A function that transforms real-valued indices to integer indices (e.g., floor(),

ceiling(), or round()). For grd_cell_range(), a list() with exactly two
elements to be called for the minimum and maximum index values, respectively.

grid_data The data member of a grd(). This is typically an array but can also be an S3
object with an array-like subset method. The native raster is special-cased as its
subset method requires non-standard handling.

Value

A modified grid whose cell centres have not changed location as a result of the subset.

Examples

grid <- grd_rct(volcano)
grd_subset(grid, 1:20, 1:30)
grd_crop(grid, rct(-10, -10, 10, 10))
grd_extend(grid, rct(-10, -10, 10, 10))

grd_summary 11

grd_summary Grid information

Description

Grid information

Usage

grd_summary(grid)

Arguments

grid A grd_xy(), grd_rct(), or other object implementing grd_*() methods.

Value

• grd_summary() returns a list() with components xmin, ymin, xmax, ymax, nx, ny, dx, dy,
width, and height.

Examples

grd_summary(grd(nx = 3, ny = 2))

grd_tile Extract normalized grid tiles

Description

Unlike grd_tile_template(), which returns a grd() whose elements are the boundaries of the
specified tiles with no data attached, grd_tile() returns the actual tile with the data.

Usage

grd_tile(grid, level, i, j = NULL)

S3 method for class 'wk_grd_rct'
grd_tile(grid, level, i, j = NULL)

S3 method for class 'wk_grd_xy'
grd_tile(grid, level, i, j = NULL)

12 grd_tile_template

Arguments

grid A grd_xy(), grd_rct(), or other object implementing grd_*() methods.

level An integer describing the overview level. This is related to the step value by a
power of 2 (i.e., a level of 1 indicates a step of 2, a level of 2 indicates a step of
4, etc.).

i, j 1-based index values. i indices correspond to decreasing y values; j indices cor-
respond to increasing x values. Values outside the range 1:nrow|ncol(data)
will be censored to NA including 0 and negative values.

Value

A grd_subset()ed version

Examples

grid <- grd_rct(volcano)
plot(grd_tile(grid, 4, 1, 1))

plot(grd_tile(grid, 3, 1, 1), add = TRUE)
plot(grd_tile(grid, 3, 1, 2), add = TRUE)
plot(grd_tile(grid, 3, 2, 1), add = TRUE)
plot(grd_tile(grid, 3, 2, 2), add = TRUE)

grid <- as_grd_xy(grd_tile(grid, 4, 1, 1))
plot(grid, add = TRUE, pch = ".")
plot(grd_tile(grid, 3, 1, 1), add = TRUE, col = "green", pch = ".")
plot(grd_tile(grid, 3, 1, 2), add = TRUE, col = "red", pch = ".")
plot(grd_tile(grid, 3, 2, 1), add = TRUE, col = "blue", pch = ".")
plot(grd_tile(grid, 3, 2, 2), add = TRUE, col = "magenta", pch = ".")

grd_tile_template Compute overview grid tile

Description

A useful workflow for raster data in a memory bounded environment is to chunk a grid into sections
or tiles. These functions compute tiles suitable for such processing. Use grd_tile_summary() to
generate statistics for level values to choose for your application.

Usage

grd_tile_template(grid, level)

grd_tile_summary(grid, levels = NULL)

handle_wkt_without_vector_size 13

Arguments

grid A grd_xy(), grd_rct(), or other object implementing grd_*() methods.

level An integer describing the overview level. This is related to the step value by a
power of 2 (i.e., a level of 1 indicates a step of 2, a level of 2 indicates a step of
4, etc.).

levels A vector of level values or NULL to use a sequence from 0 to the level that
would result in a 1 x 1 grid.

Value

A grd()

Examples

grid <- grd_rct(volcano)
grd_tile_summary(grid)
grd_tile_template(grid, 3)

handle_wkt_without_vector_size

Test handlers for handling of unknown size vectors

Description

Test handlers for handling of unknown size vectors

Usage

handle_wkt_without_vector_size(handleable, handler)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

handler A wk_handler object.

Examples

handle_wkt_without_vector_size(wkt(), wk_vector_meta_handler())

14 new_wk_grd

new_wk_crc S3 details for crc objects

Description

S3 details for crc objects

Usage

new_wk_crc(x = list(x = double(), y = double(), r = double()), crs = NULL)

Arguments

x A crc()

crs A value to be propagated as the CRS for this vector.

new_wk_grd S3 details for grid objects

Description

S3 details for grid objects

Usage

new_wk_grd(x, subclass = character())

Arguments

x A grd()

subclass An optional subclass.

Value

An object inheriting from ’grd’

new_wk_rct 15

new_wk_rct S3 details for rct objects

Description

S3 details for rct objects

Usage

new_wk_rct(
x = list(xmin = double(), ymin = double(), xmax = double(), ymax = double()),
crs = NULL

)

Arguments

x A rct()

crs A value to be propagated as the CRS for this vector.

new_wk_wkb S3 Details for wk_wkb

Description

S3 Details for wk_wkb

Usage

new_wk_wkb(x = list(), crs = NULL, geodesic = NULL)

validate_wk_wkb(x)

is_wk_wkb(x)

Arguments

x A (possibly) wkb() vector

crs A value to be propagated as the CRS for this vector.

geodesic TRUE if edges must be interpolated as geodesics when coordinates are spherical,
FALSE otherwise.

16 new_wk_xy

new_wk_wkt S3 Details for wk_wkt

Description

S3 Details for wk_wkt

Usage

new_wk_wkt(x = character(), crs = NULL, geodesic = NULL)

is_wk_wkt(x)

validate_wk_wkt(x)

Arguments

x A (possibly) wkt() vector

crs A value to be propagated as the CRS for this vector.

geodesic TRUE if edges must be interpolated as geodesics when coordinates are spherical,
FALSE otherwise.

new_wk_xy S3 details for xy objects

Description

S3 details for xy objects

Usage

new_wk_xy(x = list(x = double(), y = double()), crs = NULL)

new_wk_xyz(x = list(x = double(), y = double(), z = double()), crs = NULL)

new_wk_xym(x = list(x = double(), y = double(), m = double()), crs = NULL)

new_wk_xyzm(
x = list(x = double(), y = double(), z = double(), m = double()),
crs = NULL

)

validate_wk_xy(x)

validate_wk_xyz(x)

plot.wk_grd_xy 17

validate_wk_xym(x)

validate_wk_xyzm(x)

Arguments

x A xy() object.

crs A value to be propagated as the CRS for this vector.

plot.wk_grd_xy Plot grid objects

Description

Plot grid objects

Usage

S3 method for class 'wk_grd_xy'
plot(x, ...)

S3 method for class 'wk_grd_rct'
plot(

x,
...,
image = NULL,
interpolate = FALSE,
oversample = 4,
border = NA,
asp = 1,
bbox = NULL,
xlab = "",
ylab = "",
add = FALSE

)

Arguments

x A wkb() or wkt()

... Passed to plotting functions for features: graphics::points() for point and
multipoint geometries, graphics::lines() for linestring and multilinestring
geometries, and graphics::polypath() for polygon and multipolygon geome-
tries.

image A raster or nativeRaster to pass to graphics::rasterImage(). use NULL to do
a quick-and-dirty rescale of the data such that the low value is black and the high
value is white.

18 rct

interpolate Use TRUE to perform interpolation between color values.

oversample A scale on the number of pixels on the device to use for sampling estimation of
large raster values. Use Inf to disable.

border Color to use for polygon borders. Use NULL for the default and NA to skip plotting
borders.

asp, xlab, ylab Passed to graphics::plot()

bbox The limits of the plot as a rct() or compatible object

add Should a new plot be created, or should handleable be added to the existing
plot?

Value

x, invisibly.

Examples

plot(grd_rct(volcano))
plot(grd_xy(volcano))

rct 2D rectangle vectors

Description

2D rectangle vectors

Usage

rct(
xmin = double(),
ymin = double(),
xmax = double(),
ymax = double(),
crs = wk_crs_auto()

)

as_rct(x, ...)

S3 method for class 'wk_rct'
as_rct(x, ...)

S3 method for class 'matrix'
as_rct(x, ..., crs = NULL)

S3 method for class 'data.frame'
as_rct(x, ..., crs = NULL)

rct_xmin 19

Arguments

xmin, ymin, xmax, ymax
Rectangle bounds.

crs A value to be propagated as the CRS for this vector.

x An object to be converted to a rct().

... Extra arguments passed to as_rct().

Value

A vector along the recycled length of bounds.

Examples

rct(1, 2, 3, 4)

rct_xmin Rectangle accessors and operators

Description

Rectangle accessors and operators

Usage

rct_xmin(x)

rct_ymin(x)

rct_xmax(x)

rct_ymax(x)

rct_width(x)

rct_height(x)

rct_intersects(x, y)

rct_contains(x, y)

rct_intersection(x, y)

Arguments

x, y rct() vectors

20 vctrs-methods

Value

• rct_xmin(), rct_xmax(), rct_ymin(), and rct_ymax() return the components of the rct().

Examples

x <- rct(0, 0, 10, 10)
y <- rct(5, 5, 15, 15)

rct_xmin(x)
rct_ymin(x)
rct_xmax(x)
rct_ymax(x)
rct_height(x)
rct_width(x)
rct_intersects(x, y)
rct_intersection(x, y)
rct_contains(x, y)
rct_contains(x, rct(4, 4, 6, 6))

vctrs-methods Vctrs methods

Description

Vctrs methods

Usage

vec_cast.wk_wkb(x, to, ...)

vec_ptype2.wk_wkb(x, y, ...)

vec_cast.wk_wkt(x, to, ...)

vec_ptype2.wk_wkt(x, y, ...)

vec_cast.wk_xy(x, to, ...)

vec_ptype2.wk_xy(x, y, ...)

vec_cast.wk_xyz(x, to, ...)

vec_ptype2.wk_xyz(x, y, ...)

vec_cast.wk_xym(x, to, ...)

vec_ptype2.wk_xym(x, y, ...)

wkb 21

vec_cast.wk_xyzm(x, to, ...)

vec_ptype2.wk_xyzm(x, y, ...)

vec_cast.wk_rct(x, to, ...)

vec_ptype2.wk_rct(x, y, ...)

vec_cast.wk_crc(x, to, ...)

vec_ptype2.wk_crc(x, y, ...)

Arguments

x, y, to, ... See vctrs::vec_cast() and vctrs::vec_ptype2().

wkb Mark lists of raw vectors as well-known binary

Description

Mark lists of raw vectors as well-known binary

Usage

wkb(x = list(), crs = wk_crs_auto(), geodesic = FALSE)

parse_wkb(x, crs = wk_crs_auto(), geodesic = FALSE)

wk_platform_endian()

as_wkb(x, ...)

Default S3 method:
as_wkb(x, ...)

S3 method for class 'character'
as_wkb(x, ..., crs = NULL, geodesic = FALSE)

S3 method for class 'wk_wkb'
as_wkb(x, ...)

S3 method for class 'blob'
as_wkb(x, ..., crs = NULL, geodesic = FALSE)

S3 method for class 'WKB'
as_wkb(x, ..., crs = NULL, geodesic = FALSE)

22 wkb_to_hex

Arguments

x A list() of raw() vectors or NULL.

crs A value to be propagated as the CRS for this vector.

geodesic TRUE if edges must be interpolated as geodesics when coordinates are spherical,
FALSE otherwise.

... Unused

Value

A new_wk_wkb()

Examples

as_wkb("POINT (20 10)")

wkb_to_hex Convert well-known binary to hex

Description

Convert well-known binary to hex

Usage

wkb_to_hex(x)

Arguments

x A wkb() vector

Value

A hex encoded wkb() vector

Examples

x <- as_wkb(xyz(1:5, 6:10, 11:15))
wkb_to_hex(x)

wkb_translate_wkt 23

wkb_translate_wkt Deprecated functions

Description

These functions are deprecated and will be removed in a future version.

Usage

wkb_translate_wkt(wkb, ..., precision = 16, trim = TRUE)

wkb_translate_wkb(wkb, ..., endian = NA_integer_)

wkt_translate_wkt(wkt, ..., precision = 16, trim = TRUE)

wkt_translate_wkb(wkt, ..., endian = NA_integer_)

Arguments

wkb A list() of raw() vectors, such as that returned by sf::st_as_binary().

... Used to keep backward compatibility with previous versions of these functions.

precision The rounding precision to use when writing (number of decimal places).

trim Trim unnecessary zeroes in the output?

endian Force the endian of the resulting WKB.

wkt A character vector containing well-known text.

wkt Mark character vectors as well-known text

Description

Mark character vectors as well-known text

Usage

wkt(x = character(), crs = wk_crs_auto(), geodesic = FALSE)

parse_wkt(x, crs = wk_crs_auto(), geodesic = FALSE)

as_wkt(x, ...)

Default S3 method:
as_wkt(x, ...)

24 wk_bbox

S3 method for class 'character'
as_wkt(x, ..., crs = NULL, geodesic = FALSE)

S3 method for class 'wk_wkt'
as_wkt(x, ...)

Arguments

x A character() vector containing well-known text.

crs A value to be propagated as the CRS for this vector.

geodesic TRUE if edges must be interpolated as geodesics when coordinates are spherical,
FALSE otherwise.

... Unused

Value

A new_wk_wkt()

Examples

wkt("POINT (20 10)")

wk_bbox 2D bounding rectangles

Description

2D bounding rectangles

Usage

wk_bbox(handleable, ...)

wk_envelope(handleable, ...)

Default S3 method:
wk_bbox(handleable, ...)

Default S3 method:
wk_envelope(handleable, ...)

S3 method for class 'wk_rct'
wk_envelope(handleable, ...)

S3 method for class 'wk_crc'
wk_envelope(handleable, ...)

wk_chunk_strategy_single 25

S3 method for class 'wk_xy'
wk_envelope(handleable, ...)

wk_bbox_handler()

wk_envelope_handler()

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

Value

A rct() of length 1.

Examples

wk_bbox(wkt("LINESTRING (1 2, 3 5)"))

wk_chunk_strategy_single

Chunking strategies

Description

It is often impractical, inefficient, or impossible to perform an operation on a vector of geometries
with all the geometries loaded into memory at the same time. These functions help generalize the
pattern of split-apply-combine to one or more handlers recycled along a common length. These
functions are designed for developers rather than users and should be considered experimental.

Usage

wk_chunk_strategy_single()

wk_chunk_strategy_feature(n_chunks = NULL, chunk_size = NULL)

wk_chunk_strategy_coordinates(n_chunks = NULL, chunk_size = NULL, reduce = "*")

26 wk_count

Arguments

n_chunks, chunk_size
Exactly one of the number of chunks or the chunk size. For wk_chunk_strategy_feature()
the chunk size refers to the number of features; for wk_chunk_strategy_coordinates()
this refers to the number of coordinates as calculated from multiple handleables
using reduce.

reduce For wk_chunk_strategy_coordinates() this refers to the function used with
Reduce() to combine coordinate counts from more than one handleable.

Value

A function that returns a data.frame with columns from and to when called with a handleable
and the feature count.

Examples

feat <- c(as_wkt(xy(1:4, 1:4)), wkt("LINESTRING (1 1, 2 2)"))
wk_chunk_strategy_single()(list(feat), 5)
wk_chunk_strategy_feature(chunk_size = 2)(list(feat), 5)
wk_chunk_strategy_coordinates(chunk_size = 2)(list(feat), 5)

wk_count Count geometry components

Description

Counts the number of geometries, rings, and coordinates found within each feature. As opposed to
wk_meta(), this handler will iterate over the entire geometry.

Usage

wk_count(handleable, ...)

Default S3 method:
wk_count(handleable, ...)

wk_count_handler()

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

wk_crs 27

Value

A data.frame with one row for every feature encountered and columns:

• n_geom: The number of geometries encountered, including the root geometry. Will be zero
for a null feature.

• n_ring: The number of rings encountered. Will be zero for a null feature.
• n_coord: The number of coordinates encountered. Will be zero for a null feature.

Examples

wk_count(as_wkt("LINESTRING (0 0, 1 1)"))
wk_count(as_wkb("LINESTRING (0 0, 1 1)"))

wk_crs Set and get vector CRS

Description

The wk package doesn’t operate on CRS objects, but does propagate them through subsetting and
concatenation. A CRS object can be any R object, and x can be any object whose ’crs’ attribute
carries a CRS. These functions are S3 generics to keep them from being used on objects that do not
use this system of CRS propagation.

Usage

wk_crs(x)

S3 method for class 'wk_vctr'
wk_crs(x)

S3 method for class 'wk_rcrd'
wk_crs(x)

wk_crs(x) <- value

wk_set_crs(x, crs)

wk_crs_output(...)

wk_is_geodesic_output(...)

Arguments

x, ... Objects whose "crs" attribute is used to carry a CRS.
value See crs.
crs An object that can be interpreted as a CRS

28 wk_crs_inherit

wk_crs_equal Compare CRS objects

Description

The wk_crs_equal() function uses special S3 dispatch on wk_crs_equal_generic() to evaluate
whether or not two CRS values can be considered equal. When implementing wk_crs_equal_generic(),
every attempt should be made to make wk_crs_equal(x, y) and wk_crs_equal(y, x) return iden-
tically.

Usage

wk_crs_equal(x, y)

wk_crs_equal_generic(x, y, ...)

Arguments

x, y Objects stored in the crs attribute of a vector.

... Unused

Value

TRUE if x and y can be considered equal, FALSE otherwise.

wk_crs_inherit Special CRS values

Description

The CRS handling in the wk package requires two sentinel CRS values. The first, wk_crs_inherit(),
signals that the vector should inherit a CRS of another vector if combined. This is useful for empty,
NULL, and/or zero-length geometries. The second, wk_crs_auto(), is used as the default argument
of crs for constructors so that zero-length geometries are assigned a CRS of wk_crs_inherit()
by default.

Usage

wk_crs_inherit()

wk_crs_longlat(crs = NULL)

wk_crs_auto()

wk_crs_auto_value(x, crs)

wk_crs_proj_definition 29

Arguments

crs A value for the coordinate reference system supplied by the user.

x A raw input to a construuctor whose length and crs attributte is used to determine
the default CRS returned by wk_crs_auto().

Examples

wk_crs_auto_value(list(), wk_crs_auto())
wk_crs_auto_value(list(), 1234)
wk_crs_auto_value(list(NULL), wk_crs_auto())

wk_crs_proj_definition

CRS object generic methods

Description

CRS object generic methods

Usage

wk_crs_proj_definition(crs, proj_version = NULL, verbose = FALSE)

wk_crs_projjson(crs)

S3 method for class '`NULL`'
wk_crs_proj_definition(crs, proj_version = NULL, verbose = FALSE)

S3 method for class 'wk_crs_inherit'
wk_crs_proj_definition(crs, proj_version = NULL, verbose = FALSE)

S3 method for class 'character'
wk_crs_proj_definition(crs, proj_version = NULL, verbose = FALSE)

S3 method for class 'double'
wk_crs_proj_definition(crs, proj_version = NULL, verbose = FALSE)

S3 method for class 'integer'
wk_crs_proj_definition(crs, proj_version = NULL, verbose = FALSE)

Arguments

crs An arbitrary R object

proj_version A package_version() of the PROJ version, or NULL if the PROJ version is
unknown.

30 wk_debug

verbose Use TRUE to request a more verbose version of the PROJ definition (e.g., PRO-
JJSON). The default of FALSE should return the most compact version that com-
pletely describes the CRS. An authority:code string (e.g., "OGC:CRS84") is
the recommended way to represent a CRS when verbose is FALSE, if possible,
falling back to the most recent version of WKT2 or PROJJSON.

Value

• wk_crs_proj_definition() Returns a string used to represent the CRS in PROJ. For recent
PROJ version you’ll want to return PROJJSON; however you should check proj_version if
you want this to work with older versions of PROJ.

• wk_crs_projjson() Returns a PROJJSON string or NA_character_ if this representation is
unknown or can’t be calculated.

Examples

wk_crs_proj_definition("EPSG:4326")

wk_debug Debug filters and handlers

Description

Debug filters and handlers

Usage

wk_debug(handleable, handler = wk_void_handler(), ...)

wk_debug_filter(handler = wk_void_handler())

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

handler A wk_handler object.

... Passed to the wk_handle() method.

Value

The result of the handler.

Examples

wk_debug(wkt("POINT (1 1)"))
wk_handle(wkt("POINT (1 1)"), wk_debug_filter())

wk_example 31

wk_example Create example geometry objects

Description

Create example geometry objects

Usage

wk_example(which = "nc", crs = NA, geodesic = FALSE)

wk_example_wkt

Arguments

which An example name. Valid example names are

• "nc" (data derived from the sf package)

• "point", "linestring", "polygon", "multipoint", "multilinestring", "multipoly-
gon", "geometrycollection"

• One of the above with the "_z", "_m", or "_zm" suffix.

crs An object that can be interpreted as a CRS

geodesic TRUE if edges must be interpolated as geodesics when coordinates are spherical,
FALSE otherwise.

Format

An object of class list of length 29.

Value

A wkt() with the specified example.

Examples

wk_example("polygon")

32 wk_flatten

wk_flatten Extract simple geometries

Description

Extract simple geometries

Usage

wk_flatten(handleable, ..., max_depth = 1)

wk_flatten_filter(handler, max_depth = 1L, add_details = FALSE)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

max_depth The maximum (outer) depth to remove.

handler A wk_handler object.

add_details Use TRUE to add a "wk_details" attribute, which contains columns feature_id,
part_id, and ring_id.

Value

handleable transformed such that collections have been expanded and only simple geometries
(point, linestring, polygon) remain.

Examples

wk_flatten(wkt("MULTIPOINT (1 1, 2 2, 3 3)"))
wk_flatten(

wkt("GEOMETRYCOLLECTION (GEOMETRYCOLLECTION (GEOMETRYCOLLECTION (POINT (0 1))))"),
max_depth = 2

)

wk_format 33

wk_format Format well-known geometry for printing

Description

Provides an abbreviated version of the well-known text representation of a geometry. This returns a
constant number of coordinates for each geometry, so is safe to use for geometry vectors with many
(potentially large) features. Parse errors are passed on to the format string and do not cause this
handler to error.

Usage

wk_format(handleable, precision = 7, trim = TRUE, max_coords = 6, ...)

wkt_format_handler(precision = 7, trim = TRUE, max_coords = 6)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

precision If trim is TRUE, the total number of significant digits to keep for each result or
the number of digits after the decimal place otherwise.

trim Use FALSE to keep trailing zeroes after the decimal place.

max_coords The maximum number of coordinates to include in the output.

... Passed to the wk_handle() method.

Value

A character vector of abbreviated well-known text.

Examples

wk_format(wkt("MULTIPOLYGON (((0 0, 10 0, 0 10, 0 0)))"))
wk_format(new_wk_wkt("POINT ENTPY"))
wk_handle(

wkt("MULTIPOLYGON (((0 0, 10 0, 0 10, 0 0)))"),
wkt_format_handler()

)

34 wk_handle.data.frame

wk_handle.data.frame Use data.frame with wk

Description

Use data.frame with wk

Usage

S3 method for class 'data.frame'
wk_handle(handleable, handler, ...)

S3 method for class 'data.frame'
wk_restore(handleable, result, ...)

S3 method for class 'tbl_df'
wk_restore(handleable, result, ...)

S3 method for class 'data.frame'
wk_translate(handleable, to, ...)

S3 method for class 'tbl_df'
wk_translate(handleable, to, ...)

S3 method for class 'sf'
wk_translate(handleable, to, ...)

S3 method for class 'sf'
wk_restore(handleable, result, ...)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

handler A wk_handler object.

... Passed to the wk_handle() method.

result The result of a filter operation intended to be a transformation.

to A prototype object.

Examples

wk_handle(data.frame(a = wkt("POINT (0 1)")), wkb_writer())
wk_translate(wkt("POINT (0 1)"), data.frame(col_name = wkb()))
wk_translate(data.frame(a = wkt("POINT (0 1)")), data.frame(wkb()))

wk_handle.wk_crc 35

wk_handle.wk_crc Read geometry vectors

Description

The handler is the basic building block of the wk package. In particular, the wk_handle() generic
allows operations written as handlers to "just work" with many different input types. The wk
package provides the wk_void() handler, the wk_format() handler, the wk_debug() handler, the
wk_problems() handler, and wk_writer()s for wkb(), wkt(), xy(), and sf::st_sfc()) vectors.

Usage

S3 method for class 'wk_crc'
wk_handle(

handleable,
handler,
...,
n_segments = getOption("wk.crc_n_segments", NULL),
resolution = getOption("wk.crc_resolution", NULL)

)

S3 method for class 'wk_rct'
wk_handle(handleable, handler, ...)

S3 method for class 'sfc'
wk_handle(handleable, handler, ...)

S3 method for class 'wk_wkb'
wk_handle(handleable, handler, ...)

S3 method for class 'wk_wkt'
wk_handle(handleable, handler, ...)

S3 method for class 'wk_xy'
wk_handle(handleable, handler, ...)

wk_handle(handleable, handler, ...)

is_handleable(handleable)

new_wk_handler(handler_ptr, subclass = character())

is_wk_handler(handler)

as_wk_handler(handler, ...)

S3 method for class 'sfg'

36 wk_handle.wk_grd_xy

wk_handle(handleable, handler, ...)

S3 method for class 'sf'
wk_handle(handleable, handler, ...)

S3 method for class 'bbox'
wk_handle(handleable, handler, ...)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

handler A wk_handler object.

... Passed to the wk_handle() method.

n_segments, resolution
The number of segments to use when approximating a circle. The default uses
getOption("wk.crc_n_segments") so that this value can be set for implicit
conversions (e.g., as_wkb()). Alternatively, set the minimum distance between
points on the circle (used to estimate n_segments). The default is obtained using
getOption("wk.crc_resolution").

handler_ptr An external pointer to a newly created WK handler

subclass The handler subclass

Value

A WK handler.

wk_handle.wk_grd_xy Handler interface for grid objects

Description

Handler interface for grid objects

Usage

S3 method for class 'wk_grd_xy'
wk_handle(handleable, handler, ..., data_order = c("y", "x"))

S3 method for class 'wk_grd_rct'
wk_handle(handleable, handler, ..., data_order = c("y", "x"))

wk_handle_slice.data.frame 37

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

handler A wk_handler object.

... Passed to the wk_handle() method.

data_order A vector of length 2 describing the order in which values should appear. The
default, c("y", "x"), will output values in the same order as the default matrix
storage in R (column-major). You can prefix a dimension with - to reverse the
order of a dimension (e.g., c("-y", "x")).

Value

The result of the handler.

Examples

wk_handle(grd(nx = 3, ny = 3), wkt_writer())
wk_handle(grd(nx = 3, ny = 3, type = "centers"), wkt_writer())

wk_handle_slice.data.frame

Handle specific regions of objects

Description

Handle specific regions of objects

Usage

S3 method for class 'data.frame'
wk_handle_slice(handleable, handler, from = NULL, to = NULL, ...)

wk_handle_slice(
handleable,
handler = wk_writer(handleable),
from = NULL,
to = NULL,
...

)

Default S3 method:
wk_handle_slice(
handleable,
handler = wk_writer(handleable),
from = NULL,

38 wk_identity

to = NULL,
...

)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

handler A wk_handler object.

from 1-based index of the feature to start from

to 1-based index of the feature to end at

... Passed to the wk_handle() method.

Value

A subset of handleable

Examples

wk_handle_slice(xy(1:5, 1:5), wkt_writer(), from = 3, to = 5)
wk_handle_slice(

data.frame(let = letters[1:5], geom = xy(1:5, 1:5)),
wkt_writer(),
from = 3, to = 5

)

wk_identity Copy a geometry vector

Description

Copy a geometry vector

Usage

wk_identity(handleable, ...)

wk_identity_filter(handler)

wk_restore(handleable, result, ...)

Default S3 method:
wk_restore(handleable, result, ...)

wk_is_geodesic 39

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

handler A wk_handler object.

result The result of a filter operation intended to be a transformation.

Value

A copy of handleable.

Examples

wk_identity(wkt("POINT (1 2)"))

wk_is_geodesic Set and get vector geodesic edge interpolation

Description

Set and get vector geodesic edge interpolation

Usage

wk_is_geodesic(x)

wk_set_geodesic(x, geodesic)

wk_is_geodesic(x) <- value

wk_geodesic_inherit()

Arguments

x An R object that contains edges

geodesic TRUE if edges must be interpolated as geodesics when coordinates are spherical,
FALSE otherwise.

value See geodesic.

Value

TRUE if edges must be interpolated as geodesics when coordinates are spherical, FALSE otherwise.

40 wk_linestring

wk_linestring Create lines, polygons, and collections

Description

Create lines, polygons, and collections

Usage

wk_linestring(handleable, feature_id = 1L, ..., geodesic = NULL)

wk_polygon(handleable, feature_id = 1L, ring_id = 1L, ..., geodesic = NULL)

wk_collection(
handleable,
geometry_type = wk_geometry_type("geometrycollection"),
feature_id = 1L,
...

)

wk_linestring_filter(handler, feature_id = 1L)

wk_polygon_filter(handler, feature_id = 1L, ring_id = 1L)

wk_collection_filter(
handler,
geometry_type = wk_geometry_type("geometrycollection"),
feature_id = 1L

)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

feature_id An identifier where changes in sequential values indicate a new feature. This is
recycled silently as needed.

... Passed to the wk_handle() method.
geodesic Use TRUE or FALSE to explicitly force the geodesic-ness of the output.
ring_id An identifier where changes in sequential values indicate a new ring. Rings are

automatically closed. This is recycled silently as needed.
geometry_type The collection type to create.
handler A wk_handler object.

Value

An object of the same class as handleable with whose coordinates have been assembled into the
given type.

wk_meta 41

Examples

wk_linestring(xy(c(1, 1), c(2, 3)))
wk_polygon(xy(c(0, 1, 0), c(0, 0, 1)))
wk_collection(xy(c(1, 1), c(2, 3)))

wk_meta Extract feature-level meta

Description

These functions return the non-coordinate information of a geometry and/or vector. They do not
parse an entire geometry/vector and are intended to be very fast even for large vectors.

Usage

wk_meta(handleable, ...)

Default S3 method:
wk_meta(handleable, ...)

wk_vector_meta(handleable, ...)

Default S3 method:
wk_vector_meta(handleable, ...)

wk_meta_handler()

wk_vector_meta_handler()

wk_geometry_type_label(geometry_type)

wk_geometry_type(geometry_type_label)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

geometry_type An integer code for the geometry type. These integers follow the WKB specifi-
cation (e.g., 1 for point, 7 for geometrycollection).

geometry_type_label

A character vector of (lowercase) geometry type labels as would be found in
WKT (e.g., point, geometrycollection).

42 wk_orient

Value

A data.frame with columns:

• geometry_type: An integer identifying the geometry type. A value of 0 indicates that the
types of geometry in the vector are not known without parsing the entire vector.

• size: For points and linestrings, the number of coordinates; for polygons, the number of
rings; for collections, the number of child geometries. A value of zero indicates an EMPTY
geometry. A value of NA means this value is unknown without parsing the entire geometry.

• has_z: TRUE if coordinates contain a Z value. A value of NA means this value is unknown
without parsing the entire vector.

• has_m: TRUE if coordinates contain an M value. A value of NA means this value is unknown
without parsing the entire vector.

• srid: An integer identifying a CRS or NA if this value was not provided.

• precision: A grid size or 0.0 if a grid size was not provided. Note that coordinate values may
not have been rounded; the grid size only refers to the level of detail with which they should
be interpreted.

• is_empty: TRUE if there is at least one non-empty coordinate. For the purposes of this value,
a non-empty coordinate is one that contains at least one value that is not NA or NaN.

Examples

wk_vector_meta(as_wkt("LINESTRING (0 0, 1 1)"))
wk_meta(as_wkt("LINESTRING (0 0, 1 1)"))
wk_meta(as_wkb("LINESTRING (0 0, 1 1)"))

wk_geometry_type_label(1:7)
wk_geometry_type(c("point", "geometrycollection"))

wk_orient Orient polygon coordinates

Description

Orient polygon coordinates

Usage

wk_orient(handleable, ..., direction = wk_counterclockwise())

wk_orient_filter(handler, direction = wk_counterclockwise())

wk_clockwise()

wk_counterclockwise()

wk_plot 43

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

direction The winding polygon winding direction

handler A wk_handler object.

Value

handleable with consistently oriented polygons, in direction winding order.

Examples

wk_orient(wkt("POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))"))
wk_orient(

wkt("POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))"),
direction = wk_clockwise()

)

wk_plot Plot well-known geometry vectors

Description

Plot well-known geometry vectors

Usage

wk_plot(
handleable,
...,
asp = 1,
bbox = NULL,
xlab = "",
ylab = "",
rule = "evenodd",
add = FALSE

)

Default S3 method:
wk_plot(
handleable,
...,
asp = 1,
bbox = NULL,

44 wk_plot

xlab = "",
ylab = "",
rule = "evenodd",
add = FALSE

)

S3 method for class 'wk_wkt'
plot(
x,
...,
asp = 1,
bbox = NULL,
xlab = "",
ylab = "",
rule = "evenodd",
add = FALSE

)

S3 method for class 'wk_wkb'
plot(
x,
...,
asp = 1,
bbox = NULL,
xlab = "",
ylab = "",
rule = "evenodd",
add = FALSE

)

S3 method for class 'wk_xy'
plot(x, ..., asp = 1, bbox = NULL, xlab = "", ylab = "", add = FALSE)

S3 method for class 'wk_rct'
plot(x, ..., asp = 1, bbox = NULL, xlab = "", ylab = "", add = FALSE)

S3 method for class 'wk_crc'
plot(x, ..., asp = 1, bbox = NULL, xlab = "", ylab = "", add = FALSE)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to plotting functions for features: graphics::points() for point and
multipoint geometries, graphics::lines() for linestring and multilinestring
geometries, and graphics::polypath() for polygon and multipolygon geome-
tries.

asp, xlab, ylab Passed to graphics::plot()

wk_problems 45

bbox The limits of the plot as a rct() or compatible object

rule The rule to use for filling polygons (see graphics::polypath())

add Should a new plot be created, or should handleable be added to the existing
plot?

x A wkb() or wkt()

Value

The input, invisibly.

Examples

plot(as_wkt("LINESTRING (0 0, 1 1)"))
plot(as_wkb("LINESTRING (0 0, 1 1)"))

wk_problems Validate well-known binary and well-known text

Description

The problems handler returns a character vector of parse errors and can be used to validate input of
any type for which wk_handle() is defined.

Usage

wk_problems(handleable, ...)

wk_problems_handler()

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

Value

A character vector of parsing errors. NA signifies that there was no parsing error.

Examples

wk_problems(new_wk_wkt(c("POINT EMTPY", "POINT (20 30)")))
wk_handle(

new_wk_wkt(c("POINT EMTPY", "POINT (20 30)")),
wk_problems_handler()

)

46 wk_set_z

wk_proj_crs_view Common CRS Representations

Description

These fixtures are calculated from PROJ version 9.1.0 and the database built from its source. They
are used internally to transform and inspect coordinate reference systems.

Usage

wk_proj_crs_view

wk_proj_crs_json

Format

An object of class data.frame with 13387 rows and 7 columns.

An object of class data.frame with 13387 rows and 3 columns.

Examples

head(wk_proj_crs_view)
colnames(wk_proj_crs_json)

wk_set_z Set coordinate values

Description

Set coordinate values

Usage

wk_set_z(handleable, z, ...)

wk_set_m(handleable, m, ...)

wk_drop_z(handleable, ...)

wk_drop_m(handleable, ...)

wk_trans_set(value, use_z = NA, use_m = NA)

wk_transform 47

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

z, m A vector of Z or M values applied feature-wise and recycled along handleable.
Use NA to keep the existing value of a given feature.

... Passed to the wk_handle() method.

value An xy(), xyz(), xym(), or xyzm() of coordinates used to replace values in the
input. Use NA to keep the existing value.

use_z, use_m Used to declare the output type. Use TRUE to ensure the output has that dimen-
sion, FALSE to ensure it does not, and NA to leave the dimension unchanged.

Examples

wk_set_z(wkt("POINT (0 1)"), 2)
wk_set_m(wkt("POINT (0 1)"), 2)
wk_drop_z(wkt("POINT ZM (0 1 2 3)"))
wk_drop_m(wkt("POINT ZM (0 1 2 3)"))

wk_transform Apply coordinate transformations

Description

Apply coordinate transformations

Usage

wk_transform(handleable, trans, ...)

wk_transform_filter(handler, trans)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

trans An external pointer to a wk_trans object

... Passed to the wk_handle() method.

handler A wk_handler object.

Examples

wk_transform(xy(0, 0), wk_affine_translate(2, 3))

48 wk_trans_affine

wk_translate.sfc Translate geometry vectors

Description

Translate geometry vectors

Usage

S3 method for class 'sfc'
wk_translate(handleable, to, ...)

wk_translate(handleable, to, ...)

Default S3 method:
wk_translate(handleable, to, ...)

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

to A prototype object.

... Passed to the wk_handle() method.

wk_trans_affine Affine transformer

Description

Affine transformer

Usage

wk_trans_affine(trans_matrix)

wk_affine_identity()

wk_affine_rotate(rotation_deg)

wk_affine_scale(scale_x = 1, scale_y = 1)

wk_affine_translate(dx = 0, dy = 0)

wk_affine_fit(src, dst)

wk_trans_explicit 49

wk_affine_rescale(rct_in, rct_out)

wk_affine_compose(...)

wk_affine_invert(x)

Arguments

trans_matrix A 3x3 transformation matrix

rotation_deg A rotation to apply in degrees counterclockwise.
scale_x, scale_y

Scale factor to apply in the x and y directions, respectively

dx, dy Coordinate offsets in the x and y direction

src, dst Point vectors of control points used to estimate the affine mapping (using base::qr.solve()).

rct_in, rct_out The input and output bounds

... Zero or more transforms in the order they should be applied.

x A wk_trans_affine()

wk_trans_explicit Transform using explicit coordinate values

Description

A wk_trans implementation that replaces coordinate values using a vector of pre-calculated coor-
dinates. This is used to perform generic transforms using R functions and system calls that are
impossible or impractical to implement at the C level.

Usage

wk_trans_explicit(value, use_z = NA, use_m = NA)

Arguments

value An xy(), xyz(), xym(), or xyzm() of coordinates used to replace values in the
input. Use NA to keep the existing value.

use_z, use_m Used to declare the output type. Use TRUE to ensure the output has that dimen-
sion, FALSE to ensure it does not, and NA to leave the dimension unchanged.

See Also

wk_coords() which has a replacement version "wk_coords<-"

Examples

trans <- wk_trans_explicit(xy(1:5, 1:5))
wk_transform(rep(xy(0, 0), 5), trans)

50 wk_vertices

wk_trans_inverse Generic transform class

Description

Generic transform class

Usage

wk_trans_inverse(trans, ...)

as_wk_trans(x, ...)

S3 method for class 'wk_trans'
as_wk_trans(x, ...)

new_wk_trans(trans_ptr, subclass = character())

Arguments

trans An external pointer to a wk_trans object

... Passed to S3 methods

x An object to be converted to a transform.

trans_ptr An external pointer to a wk_trans_t transform struct.

subclass An optional subclass to apply to the pointer

wk_vertices Extract vertices

Description

These functions provide ways to extract individual coordinate values. Whereas wk_vertices()
returns a vector of coordinates as in the same format as the input, wk_coords() returns a data
frame with coordinates as columns.

Usage

wk_vertices(handleable, ...)

wk_coords(handleable, ...)

wk_coords(handleable, use_z = NA, use_m = NA) <- value

wk_vertex_filter(handler, add_details = FALSE)

wk_void 51

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

use_z, use_m Used to declare the output type. Use TRUE to ensure the output has that dimen-
sion, FALSE to ensure it does not, and NA to leave the dimension unchanged.

value An xy(), xyz(), xym(), or xyzm() of coordinates used to replace values in the
input. Use NA to keep the existing value.

handler A wk_handler object.

add_details Use TRUE to add a "wk_details" attribute, which contains columns feature_id,
part_id, and ring_id.

Details
wk_coords<- is the replacement-function version of ’wk_coords’. Using the engine of wk_trans_explicit()
the coordinates of an object can be transformed in a generic way using R functions as needed.

Value

• wk_vertices() extracts vertices and returns the in the same format as the handler

• wk_coords() returns a data frame with columns columns feature_id (the index of the fea-
ture from whence it came), part_id (an arbitrary integer identifying the point, line, or poly-
gon from whence it came), ring_id (an arbitrary integer identifying individual rings within
polygons), and one column per coordinate (x, y, and/or z and/or m).

Examples

wk_vertices(wkt("LINESTRING (0 0, 1 1)"))
wk_coords(wkt("LINESTRING (0 0, 1 1)"))

wk_coords() replacement function
x <- xy(1:5, 1:5)
y <- as_wkt(x)
wk_coords(y) <- cbind(5:1, 0:4)
wk_coords(x) <- y[5:1]
y
x

wk_void Do nothing

Description

This handler does nothing and returns NULL. It is useful for benchmarking readers and handlers and
when using filters that have side-effects (e.g., wk_debug()). Note that this handler stops on the first
parse error; to see a list of parse errors see the wk_problems() handler.

52 wk_writer.sfc

Usage

wk_void(handleable, ...)

wk_void_handler()

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the wk_handle() method.

Value

NULL

Examples

wk_void(wkt("POINT (1 4)"))
wk_handle(wkt("POINT (1 4)"), wk_void_handler())

wk_writer.sfc Write geometry vectors

Description

When writing transformation functions, it is often useful to know which handler should be used
to create a (potentially modified) version of an object. Some transformers (e.g., wk_vertices())
modify the geometry type of an object, in which case a generic writer is needed. This defaults to
wkb_writer() because it is fast and can handle all geometry types.

Usage

S3 method for class 'sfc'
wk_writer(handleable, ...)

S3 method for class 'sf'
wk_writer(handleable, ...)

sfc_writer(promote_multi = FALSE)

wkb_writer(buffer_size = 2048L, endian = NA_integer_)

wkt_writer(precision = 16L, trim = TRUE)

wk_writer(handleable, ..., generic = FALSE)

xy 53

Default S3 method:
wk_writer(handleable, ...)

S3 method for class 'wk_wkt'
wk_writer(handleable, ..., precision = 16, trim = TRUE)

S3 method for class 'wk_wkb'
wk_writer(handleable, ...)

S3 method for class 'wk_xy'
wk_writer(handleable, ..., generic = FALSE)

xy_writer()

Arguments

handleable A geometry vector (e.g., wkb(), wkt(), xy(), rct(), or sf::st_sfc()) for
which wk_handle() is defined.

... Passed to the writer constructor.

promote_multi Use TRUE to promote all simple geometries to a multi type when reading to
sfc. This is useful to increase the likelihood that the sfc will contain a single
geometry type.

buffer_size Control the initial buffer size used when writing WKB.

endian Use 1 for little endian, 0 for big endian, or NA for system endian.

precision If trim is TRUE, the total number of significant digits to keep for each result or
the number of digits after the decimal place otherwise.

trim Use FALSE to keep trailing zeroes after the decimal place.

generic Use TRUE to obtain a writer that can write all geometry types.

Value

A wk_handler.

xy Efficient point vectors

Description

Efficient point vectors

54 xy

Usage

xy(x = double(), y = double(), crs = wk_crs_auto())

xyz(x = double(), y = double(), z = double(), crs = wk_crs_auto())

xym(x = double(), y = double(), m = double(), crs = wk_crs_auto())

xyzm(
x = double(),
y = double(),
z = double(),
m = double(),
crs = wk_crs_auto()

)

xy_dims(x)

as_xy(x, ...)

Default S3 method:
as_xy(x, ..., dims = NULL)

S3 method for class 'wk_xy'
as_xy(x, ..., dims = NULL)

S3 method for class 'matrix'
as_xy(x, ..., crs = NULL)

S3 method for class 'data.frame'
as_xy(x, ..., dims = NULL, crs = NULL)

Arguments

x, y, z, m Coordinate values.

crs A value to be propagated as the CRS for this vector.

... Passed to methods.

dims A set containing one or more of c("x", "y", "z", "m").

Value

A vector of coordinate values.

Examples

xy(1:5, 1:5)
xyz(1:5, 1:5, 10)
xym(1:5, 1:5, 10)
xyzm(1:5, 1:5, 10, 12)

xy_x 55

NA, NA maps to a null/na feature; NaN, NaN maps to EMPTY
as_wkt(xy(NaN, NaN))
as_wkt(xy(NA, NA))

xy_x XY vector extractors

Description

XY vector extractors

Usage

xy_x(x)

xy_y(x)

xy_z(x)

xy_m(x)

Arguments

x An xy() vector

Value

Components of the xy() vector or NULL if the dimension is missing

Examples

x <- xyz(1:5, 6:10, 11:15)
xy_x(x)
xy_y(x)
xy_z(x)
xy_m(x)

Index

∗ datasets
wk_example, 31
wk_proj_crs_view, 46

as.raster(), 5
as_crc (crc), 3
as_grd_rct (grd), 5
as_grd_xy (grd), 5
as_rct (rct), 18
as_wk_handler (wk_handle.wk_crc), 35
as_wk_trans (wk_trans_inverse), 50
as_wkb (wkb), 21
as_wkt (wkt), 23
as_xy (xy), 53

base::qr.solve(), 49

ceiling(), 7, 9, 10
character(), 24
crc, 3
crc(), 4, 14
crc_center (crc_x), 4
crc_r (crc_x), 4
crc_x, 4
crc_y (crc_x), 4

dim(), 5

floor(), 7, 9, 10

graphics::lines(), 17, 44
graphics::plot(), 18, 44
graphics::points(), 17, 44
graphics::polypath(), 17, 44, 45
graphics::rasterImage(), 17
grd, 5
grd(), 5, 8–11, 13, 14
grd_cell, 7
grd_cell(), 9
grd_cell_range (grd_cell), 7
grd_cell_range(), 7, 9, 10

grd_cell_rct (grd_cell), 7
grd_cell_xy (grd_cell), 7
grd_crop (grd_subset), 9
grd_data_extract (grd_extract), 8
grd_data_subset (grd_subset), 9
grd_extend (grd_subset), 9
grd_extract, 8
grd_extract(), 8
grd_extract_nearest (grd_extract), 8
grd_rct (grd), 5
grd_rct(), 7, 8, 10–13
grd_snap_next, 9
grd_snap_next(), 9
grd_snap_previous (grd_snap_next), 9
grd_snap_previous(), 9
grd_subset, 9
grd_subset(), 8, 9, 12
grd_summary, 11
grd_tile, 11
grd_tile(), 11
grd_tile_summary (grd_tile_template), 12
grd_tile_summary(), 12
grd_tile_template, 12
grd_tile_template(), 11
grd_xy (grd), 5
grd_xy(), 7, 8, 10–13

handle_wkt_without_vector_size, 13
handleable, 7, 8

is_handleable (wk_handle.wk_crc), 35
is_wk_handler (wk_handle.wk_crc), 35
is_wk_wkb (new_wk_wkb), 15
is_wk_wkt (new_wk_wkt), 16

list(), 22

native raster, 8, 10
new_wk_crc, 14
new_wk_grd, 14

56

INDEX 57

new_wk_handler (wk_handle.wk_crc), 35
new_wk_rct, 15
new_wk_trans (wk_trans_inverse), 50
new_wk_wkb, 15
new_wk_wkb(), 22
new_wk_wkt, 16
new_wk_wkt(), 24
new_wk_xy, 16
new_wk_xym (new_wk_xy), 16
new_wk_xyz (new_wk_xy), 16
new_wk_xyzm (new_wk_xy), 16

package_version(), 29
parse_wkb (wkb), 21
parse_wkt (wkt), 23
plot.wk_crc (wk_plot), 43
plot.wk_grd_rct (plot.wk_grd_xy), 17
plot.wk_grd_xy, 17
plot.wk_rct (wk_plot), 43
plot.wk_wkb (wk_plot), 43
plot.wk_wkt (wk_plot), 43
plot.wk_xy (wk_plot), 43

rasterImage(), 5
raw(), 22, 23
rct, 18
rct(), 5–8, 10, 13, 15, 18–20, 25, 26, 30,

32–34, 36–41, 43–45, 47, 48, 51–53
rct_contains (rct_xmin), 19
rct_height (rct_xmin), 19
rct_intersection (rct_xmin), 19
rct_intersects (rct_xmin), 19
rct_width (rct_xmin), 19
rct_xmax (rct_xmin), 19
rct_xmin, 19
rct_ymax (rct_xmin), 19
rct_ymin (rct_xmin), 19
Reduce(), 26
round(), 7, 10

sf::st_sfc(), 13, 25, 26, 30, 32–41, 43–45,
47, 48, 51–53

sfc_writer (wk_writer.sfc), 52

validate_wk_wkb (new_wk_wkb), 15
validate_wk_wkt (new_wk_wkt), 16
validate_wk_xy (new_wk_xy), 16
validate_wk_xym (new_wk_xy), 16
validate_wk_xyz (new_wk_xy), 16

validate_wk_xyzm (new_wk_xy), 16
vctrs-methods, 20
vctrs::vec_cast(), 21
vctrs::vec_ptype2(), 21
vec_cast.wk_crc (vctrs-methods), 20
vec_cast.wk_rct (vctrs-methods), 20
vec_cast.wk_wkb (vctrs-methods), 20
vec_cast.wk_wkt (vctrs-methods), 20
vec_cast.wk_xy (vctrs-methods), 20
vec_cast.wk_xym (vctrs-methods), 20
vec_cast.wk_xyz (vctrs-methods), 20
vec_cast.wk_xyzm (vctrs-methods), 20
vec_ptype2.wk_crc (vctrs-methods), 20
vec_ptype2.wk_rct (vctrs-methods), 20
vec_ptype2.wk_wkb (vctrs-methods), 20
vec_ptype2.wk_wkt (vctrs-methods), 20
vec_ptype2.wk_xy (vctrs-methods), 20
vec_ptype2.wk_xym (vctrs-methods), 20
vec_ptype2.wk_xyz (vctrs-methods), 20
vec_ptype2.wk_xyzm (vctrs-methods), 20

wk_affine_compose (wk_trans_affine), 48
wk_affine_fit (wk_trans_affine), 48
wk_affine_identity (wk_trans_affine), 48
wk_affine_invert (wk_trans_affine), 48
wk_affine_rescale (wk_trans_affine), 48
wk_affine_rotate (wk_trans_affine), 48
wk_affine_scale (wk_trans_affine), 48
wk_affine_translate (wk_trans_affine),

48
wk_bbox, 24
wk_bbox_handler (wk_bbox), 24
wk_chunk_strategy_coordinates

(wk_chunk_strategy_single), 25
wk_chunk_strategy_coordinates(), 26
wk_chunk_strategy_feature

(wk_chunk_strategy_single), 25
wk_chunk_strategy_feature(), 26
wk_chunk_strategy_single, 25
wk_clockwise (wk_orient), 42
wk_collection (wk_linestring), 40
wk_collection_filter (wk_linestring), 40
wk_coords (wk_vertices), 50
wk_coords(), 49
wk_coords<- (wk_vertices), 50
wk_count, 26
wk_count_handler (wk_count), 26
wk_counterclockwise (wk_orient), 42
wk_crs, 27

58 INDEX

wk_crs(), 5
wk_crs<- (wk_crs), 27
wk_crs_auto (wk_crs_inherit), 28
wk_crs_auto(), 28, 29
wk_crs_auto_value (wk_crs_inherit), 28
wk_crs_equal, 28
wk_crs_equal(), 28
wk_crs_equal_generic (wk_crs_equal), 28
wk_crs_equal_generic(), 28
wk_crs_inherit, 28
wk_crs_inherit(), 28
wk_crs_longlat (wk_crs_inherit), 28
wk_crs_output (wk_crs), 27
wk_crs_proj_definition, 29
wk_crs_projjson

(wk_crs_proj_definition), 29
wk_debug, 30
wk_debug(), 35, 51
wk_debug_filter (wk_debug), 30
wk_drop_m (wk_set_z), 46
wk_drop_z (wk_set_z), 46
wk_envelope (wk_bbox), 24
wk_envelope_handler (wk_bbox), 24
wk_example, 31
wk_example_wkt (wk_example), 31
wk_flatten, 32
wk_flatten_filter (wk_flatten), 32
wk_format, 33
wk_format(), 35
wk_geodesic_inherit (wk_is_geodesic), 39
wk_geometry_type (wk_meta), 41
wk_geometry_type_label (wk_meta), 41
wk_handle (wk_handle.wk_crc), 35
wk_handle(), 13, 25, 26, 30, 32–41, 43–45,

47, 48, 51–53
wk_handle.data.frame, 34
wk_handle.wk_crc, 35
wk_handle.wk_grd_rct

(wk_handle.wk_grd_xy), 36
wk_handle.wk_grd_xy, 36
wk_handle_slice

(wk_handle_slice.data.frame),
37

wk_handle_slice.data.frame, 37
wk_handler, 13, 30, 32, 34, 36–40, 43, 47, 51,

53
wk_identity, 38
wk_identity_filter (wk_identity), 38

wk_is_geodesic, 39
wk_is_geodesic<- (wk_is_geodesic), 39
wk_is_geodesic_output (wk_crs), 27
wk_linestring, 40
wk_linestring_filter (wk_linestring), 40
wk_meta, 41
wk_meta(), 26
wk_meta_handler (wk_meta), 41
wk_orient, 42
wk_orient_filter (wk_orient), 42
wk_platform_endian (wkb), 21
wk_plot, 43
wk_polygon (wk_linestring), 40
wk_polygon_filter (wk_linestring), 40
wk_problems, 45
wk_problems(), 35, 51
wk_problems_handler (wk_problems), 45
wk_proj_crs_json (wk_proj_crs_view), 46
wk_proj_crs_view, 46
wk_restore (wk_identity), 38
wk_restore.data.frame

(wk_handle.data.frame), 34
wk_restore.sf (wk_handle.data.frame), 34
wk_restore.tbl_df

(wk_handle.data.frame), 34
wk_set_crs (wk_crs), 27
wk_set_geodesic (wk_is_geodesic), 39
wk_set_m (wk_set_z), 46
wk_set_z, 46
wk_trans, 49
wk_trans_affine, 48
wk_trans_affine(), 49
wk_trans_explicit, 49
wk_trans_explicit(), 51
wk_trans_inverse, 50
wk_trans_set (wk_set_z), 46
wk_transform, 47
wk_transform_filter (wk_transform), 47
wk_translate (wk_translate.sfc), 48
wk_translate.data.frame

(wk_handle.data.frame), 34
wk_translate.sf (wk_handle.data.frame),

34
wk_translate.sfc, 48
wk_translate.tbl_df

(wk_handle.data.frame), 34
wk_vector_meta (wk_meta), 41
wk_vector_meta_handler (wk_meta), 41

INDEX 59

wk_vertex_filter (wk_vertices), 50
wk_vertices, 50
wk_vertices(), 52
wk_void, 51
wk_void(), 35
wk_void_handler (wk_void), 51
wk_writer (wk_writer.sfc), 52
wk_writer(), 35
wk_writer.sfc, 52
wkb, 21
wkb(), 13, 15, 17, 22, 25, 26, 30, 32–41,

43–45, 47, 48, 51–53
wkb_to_hex, 22
wkb_translate_wkb (wkb_translate_wkt),

23
wkb_translate_wkt, 23
wkb_writer (wk_writer.sfc), 52
wkb_writer(), 52
wkt, 23
wkt(), 13, 16, 17, 25, 26, 30–41, 43–45, 47,

48, 51–53
wkt_format_handler (wk_format), 33
wkt_translate_wkb (wkb_translate_wkt),

23
wkt_translate_wkt (wkb_translate_wkt),

23
wkt_writer (wk_writer.sfc), 52

xy, 53
xy(), 8, 13, 17, 25, 26, 30, 32–41, 43–45,

47–49, 51–53, 55
xy_dims (xy), 53
xy_m (xy_x), 55
xy_writer (wk_writer.sfc), 52
xy_x, 55
xy_y (xy_x), 55
xy_z (xy_x), 55
xym (xy), 53
xym(), 47, 49, 51
xyz (xy), 53
xyz(), 47, 49, 51
xyzm (xy), 53
xyzm(), 47, 49, 51

	crc
	crc_x
	grd
	grd_cell
	grd_extract
	grd_snap_next
	grd_subset
	grd_summary
	grd_tile
	grd_tile_template
	handle_wkt_without_vector_size
	new_wk_crc
	new_wk_grd
	new_wk_rct
	new_wk_wkb
	new_wk_wkt
	new_wk_xy
	plot.wk_grd_xy
	rct
	rct_xmin
	vctrs-methods
	wkb
	wkb_to_hex
	wkb_translate_wkt
	wkt
	wk_bbox
	wk_chunk_strategy_single
	wk_count
	wk_crs
	wk_crs_equal
	wk_crs_inherit
	wk_crs_proj_definition
	wk_debug
	wk_example
	wk_flatten
	wk_format
	wk_handle.data.frame
	wk_handle.wk_crc
	wk_handle.wk_grd_xy
	wk_handle_slice.data.frame
	wk_identity
	wk_is_geodesic
	wk_linestring
	wk_meta
	wk_orient
	wk_plot
	wk_problems
	wk_proj_crs_view
	wk_set_z
	wk_transform
	wk_translate.sfc
	wk_trans_affine
	wk_trans_explicit
	wk_trans_inverse
	wk_vertices
	wk_void
	wk_writer.sfc
	xy
	xy_x
	Index

